12 STATISTICAL METHODS

Statistical methods are frequently used in air pollution studies. Several
types of statistical models, methods and analyses will be discussed in this
chapter.

The fundamental aspects of atmospheric diffusion are based on statistical
theories (Taylor, 1921), as confirmed by the recent, promising development of
Lagrangian Monte-Carlo techniques for pollutant dispersion simulations. These
methods have been discussed in Chapter 8. Moreover, the newly developed theo-
ries of chaos (Berge et al., 1984; Grebogi et al., 1987), also based on stochastic
methods, seem promising for the treatment of turbulence in fluid flows. These
statistical aspects of chaos theory will not, however, be discussed further here.

In this chapter, we will address the following topics: 1) frequency distribu-
tion of air quality measurements and the characterization of extreme values, a
subject that is important for regulatory purposes; 2) time series analysis, in the
time and the frequency domain; 3) the joint application of deterministic and
statistical techniques (e.g., by using Kalman filters); 4) receptor modeling tech-
niques; 5) the statistical methodologies that can be used to evaluate the perform-
ance of air quality dispersion models; 6) interpolation and graphic techniques,
such as Kriging, pattern recognition, cluster analysis, and fractal analysis; and
7) optimization methods.

A general distinction between statistical and deterministic approaches is
that air pollution deterministic models initiate their calculations at the pollution
sources and aim at the establishment of cause-effect relationships, while statisti-
cal models are characterized by their direct use of air quality measurements to
infer semiempirical relationships. Statistical models are useful in situations such
as real-time short-term forecasting, where the information available from meas-
ured concentration trends is generally more relevant than that obtained from

deterministic analyses.

The reader can find some general information about basic statistical meth-
ods for air pollution data in Gilbert (1987). Statistical analysis with missing data
— a problem often encountered in environmental applications — is discussed by
Little and Rubin (1987). References and more specific applications are discussed
in the sections below.
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12.1 FREQUENCY DISTRIBUTION

As noted by Seinfeld (1986), “air pollution concentrations are inherent
random variables because of their dependence on the fluctuations of meteorolog
cal and emission variables.” A random variable is characterized by two ma
factors: its probability density function and its autocorrelation structure. Ti
probability density function pdf{(c) gives the probability pdf(c)dc that the conce
tration ¢, of a certain species at a particular location during a certain time perio
is between ¢ and c+dc. The autocorrelation function quantifies the “serial” beha
ior of the “time series” of concentrations, i.e., the relationship between the co
centration value at ¢, and those at previous times, for a certain species at
particular location. Nonstationary phenomena strongly complicate these statis:
cal characterizations. Often, if not always, concentration measurements posse
highly nonstationary features. Under these conditions, both pdf and autocorrel
tion vary with season and even the hour of the day (Zannetti et al., 1978).

The autocorrelation structure of concentration values plays a key role
understanding the variation with time of concentration. For example, high pos
tive autocorrelation means that peak concentration values tend to be followed t
high values and that clean periods tend to be followed by low pollution periods -
a behavior that is typically measured in air pollution studies. The evaluation «
the pdf, however, has received more attention in air pollution statistical studit
because its determination is useful in regulatory applications based on the co
cept of air quality “standards,” i.e., ambient concentration values that should n
be exceeded. In other words, the knowledge, from direct measurements or oth
techniques, of the pdf allows the calculation of the exact number of violations (¢
expected violations) of a specified air quality standard, as illustrated in Fi
ure 12-1), where the integral of pdf{c)dc, from the air quality standard value
to infinity, gives the probability of exceedance of c;.

Therefore, it is important to calculate or estimate the pdf. This operatic
requires two steps: 1) the evaluation of the form of the pdf (e.g., a log-norm:
pdf) and 2) the evaluation of the parameters of this chosen form. Several fr:
quency distribution functions have been proposed and used to fit air quali
measurements. Georgopoulos and Seinfeld (1982), Tsukatami and Shigemits
(1980), and Marani et al. (1986) discuss and summarize several of them, inclu
ing the following distributions:

. Log-normal
. Weibull

. Gamma
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. Three-parameter log-normal
. Three-parameter Weibull
. Three-parameter beta
o Four-parameter beta
. Pearson
pdf(c)

Most frequently occuring value c,

Mean value ¢

Air quality standard c,

I
|
|
,.g

Ce

¥ Concentration ¢

Figure 12-1.  Example of application of the pdf to calculate the probability of
exceedance of air quality standard c;.

The most common distribution is the log-normal distribution, which is
represented by

(Inc-Inc,)
Pafle) = (2m)'/% ¢ Ino;, xP [_ 2 In? 08)8] (12-1)
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where T, is the geometric mean and g; is the geometric standard deviation of c.
According to this distribution, the logarithms of the concentrations have a normal
(i.e., Gaussian) distribution N(In ¢, In o). Even though heuristic justifications
have been provided for explaining the occurrence of log-normal distributions
(Cats and Holtslag, 1980; Kahn, 1973), no a priori reason seems to exist for
preferring one distribution above the others (Seinfeld, 1986).

The log-normal distribution has been studied by several authors, including
Larsen (1971), whose pioneering work identified the following relations, some-
times referred to as Larsen’s laws:

1. Pollutant concentrations are lognormally distributed for all averag-
ing times
2. Median concentrations (50th percentile) are proportional to the av-

eraging time raised to an exponent

3. Maximum concentrations are approximately inversely proportional
to the averaging time raised to an exponent

An example of SO; concentration measurements mostly in agreement
with the above laws is presented in Figure 12-2. Other data sets, however, may
show less agreement (especially secondary pollutants, such as NO, and O;).

Frequency distributions are mostly used to assess the probability of occur-
rence of high concentration values (e.g., exceedances). Therefore, it is most im-
portant that these distributions be accurate at their right tail than elsewhere. It is
well known, however, that statistics of extreme values are the most affected by
uncertainties, even though ad hoc methods have been proposed to handle ex-
treme values (e.g., Roberts, 1979; Williams, 1984; Drufuca and Giuliano, 1978;
Horowitz and Barakat, 1979; Chock and Sluchak, 1986; and Surman et al.,
1987). It is unfortunate, from a statistical point of view, that U.S. air quality
standards were chosen as values that can be exceeded only once a year. This
choice has put the standards at the very end of the frequency distribution tail,
where little confidence can be given to either measurements or theoretical esti-
mates. Alternative choices of standards, i.e., the 95th percentile, would have
been more “stable” and less questionable. Some countries are moving toward
this alternative. For example, Italy introduced, in 1983, new SO; standards based
on the 50th and 98th percentiles of the SO; daily average concentrations, instead
of the previous 30-minute and daily not-to-be-exceeded standards.
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Figure 12-2.  Sulfur dioxide concentration versus averaging time and frequency
for 1980 at the United States National Aerometric Data Bank
(NADB) Site 264280007 HO1, 8227 S. Broadway, St. Louis, Mis-
souri. Source: Chart courtesy of Dr. Ralph Larsen, United States
Environmental Protection Agency, Research Triangle Park, North
Carolina (from Stern et. al., 1984). [Reprinted with permission
Jfrom Academic Press.]
12.2 TIME SERIES ANALYSIS

Time series analysis methods aim at the analysis of data arranged in a
time sequence, either in the time domain (e.g., Box-Jenkins methods) or in the
frequency domain (e.g., spectral analysis). They include the following methods:

These

Box-Jenkins approach
Spectral analysis
Regression analysis
Trend analysis

Principal components analysis

statistical modeling approaches can be used in a “black box” mode

when, for example, time series of concentrations are analyzed without any other
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information, just to evaluate their intrinsic variations and without attempting any
physical explanation. Or, they can be used in a “gray box” mode, in which other
parameters, for example meteorological and emission terms, are included, in an
effort to incorporate, within a statistical frame, deterministic relations.

These methods can be used either in a “batch” or a “real-time” mode.
Batch simulations perform statistical analyses of past measurements, in an effort
to establish empirical relationships. Real-time applications (e.g., Bacci et al.,
~ 1981; Finzi and Tebaldi, 1982) require the availability of on-line data and pro-
vide forecasts that can be used by decision-makers for real-time intervention
strategies, in a effort to mitigate possible incoming concentration episodes.

The Box-Jenkins methodology (Box and Jenkins, 1970; new edition, 1976)
is considered the most cost-effective approach for time-series analysis and has
been frequently applied to evaluate meteorological and air quality measurement
patterns. This theory has been described and summarized in several books and
articles and will not be discussed here. The general form of the Box-Jenkins
equation to describe a time series is :

$,(B) ®p(B°) V¢ VP 2, = 8,(B) O,(’) a, (12-2)

where ¢, is the autoregressive operation of order p, @, is the seasonal autoregres-
sive operation of order P with seasonality s, B is the backward operator, V is the
difference operator, V; is the seasonal difference operator, z, is the time series,
6, is the moving average operator of order g, G is the seasonal moving average
operator of order Q and a, is a Gaussian white noise. In general, however, sim-
ple forms of Equation 12-2 (with only three to four terms) are sufficient to well
characterize z,. Figure 12-3 shows an example of Box-Jenkins forecasting.

Important simulations and results, using the Box-Jenkins theory, have
been provided by Chock et al. (1975); by Simpson and Layton (1983) for the
forecasting of ozone peaks; by Tiao el al., (1975), who modified the Box-Jenkins
approach for treating the effects of intervention strategies during the period in
which the time series has been collected; by Roy and Pellerin (1982) for the
evaluation of long-term trends and intervention analysis; by Zinsmeister and
Redman (1980) for aerosol data; and by Murray and Farber (1982) for evaluating
and historical visibility data base.

Spectral analysis techniques (Jenkins and Watts, 1968) allow the identifi-
cation of cycles in meteorological and air quality time-series measurements. In
particular, two studies (Tilley and McBean, 1973; Trivikrama et al., 1976) first
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Figure 12-3.  Univariate time series analysis of oxidant concentrations. The solid
line indicates actual data and the dashed line forecasted data
(from Chock et al., 1975). [Reprinted with permission from Per-
gamon Press. ]

showed the existence of the following main oscillations of SO, and wind speed
data: semidiurnal, diurnal, and three- to three-and-a-half-day period. Semi-
diurnal cycles have been ascribed to local phenomena (like the sea breeze), while
the longest period seems to be caused by synoptic weather variations, which have
a period close to three-and-a-half days in the study area (northeastern United
States). Figure 12-4 shows an example of spectral analysis of SO,, wind speed,
temperature and pressure .

Regression analyses are a particular type of multiple time-series analysis,
in which, for example, meteorological measurements are statistically related to
air quality concentrations. Examples of multiple linear regression studies are
presented in Figure 12-5, where visibility reduction is interpreted as a function of
pollutant concentrations and meteorological conditions, and Figure 12-6, where
oxidant concentrations are predicted as a multiple linear regression of the loga-
rithm of the solar radiation intensity, wind speed and dry bulb temperature.
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Figure 12-4.  Logarithm of the power autospectra of SO, and meteorological
hourly data (wind speed, temperature and pressure) during a six—
month summer period (dots) and a six-month winter period
(circles) (from Zannetti, et al., 1978a). [Reprinted with permission
from Pergamon Press.]

Trend and seasonal variations are also assessed by multiple regression
models, e.g., as performed by Buishand et al. (1988). Principal components have
also been used to calculate pollutant distributions and predictions (Petersen,
1970; Henry and Hidy, 1979; Lin, 1982).

Time series methods can be applied in two modes: a “fitting” mode and a
“forecasting” mode. In the forecasting mode, the model parameters (e.g., the
regression coefficients) are estimated from one set of measurements and, subse-
quently, the time series model is applied, with these estimated parameters, to
another set of measurements to calculate the forecasting performance. In the
fitting mode, the same set of measurements is used for both parameter estima-
tion and model performance evaluation. Clearly, only the forecasting mode
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Figure 12-5.  Observed and predicted values for visibility (visual range in km) at
Los Alamitos and Los Angeles, Summer 1973 (from Barone et al.,
1978). [Reprinted with permission from Pergamon Press.]
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eecee Jagged model (long term prediction) (from Chock et al.,
1975). [Reprinted with permission from Pergamon Press.]
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provides an unambiguous evaluation of model performance, while the fitting
mode overestimates the model’s forecasting ability.

A useful combination of fitting and forecasting can be obtained by apply-
ing time series models in an “adaptive” mode, in which, at each time ¢, the
model parameters are re-estimated using the measurements of a “learning” pe-
riod of duration T (i.e., from ¢-T to ?). In this way, if the duration T is appropri-
ate, the model’s performance can be maximized. Figure 12-7 shows an example
of the adaptive technique using two simple models (AR(1) and AR(1)CS). Note
that both models have an optimum T which gives a forecasting performance that
.exceeds even that of the fitting model.

12.3 MIXED DETERMINISTIC STATISTICAL MODELS (KALMAN
FILTERS)

Semiempirical methods and real-time filters, especially the Kalman fil-
ters, have been frequently used for updating the forecasting capabilities of a
predictor (generally a deterministic predictor) based upon the availability of real-
time measurements of the system variables. (A common application of the
Kalman filter is in navigation space guidance and orbit determination, where
computations are dynamically changed according to real-time measurements of
the flying object’s position and velocity.) The Kalman filter technique and its
application to air pollution problems are discussed below.

12.3.1 Introduction to Kalman Filters

The principle of least squares estimation originated at the beginning of the
19th century, but only a century and a half later, starting with the pioneering
work of Wiener (1949), a substantial innovation allowed its “recursive” applica-
tion, as explained below.

Let us consider, following the discussion by Young (1974), the linear re-
gression problem

y=x"a (12-3)

in which a variable y is related to n other linearly independent variables
x = [x1, X2, ..., x,]7, through the unknown coefficients a = [a;, a2, ..., an)”.
Then, if we have k observations of y and x, we can obtain an estimate a; of a by
using the least squares method, as follows
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Figure 12-7.  Values of o?, the forecasting error variance, for the AR(1) (dots)

and AR(1)CS (circles) adaptive models applied to hourly SO, data
(one-year analysis). The error variance is plotted against the
length T of the learning period. The horizontal lines show compara-
ble o? values of nonadaptive models for fitting (dashed lines) and
Jorecasting (solid lines) cases. (Forecasting was obtained by using
the parameters estimated during the same season one year before)
(from Zannetti, 1978). [Reprinted with permission from the Air Pol-
lution Control Association.]
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k -1 k
ay =[z X; X;T] > XV (12-4)

i=1 i=1

But if the number k is increasing, i.e., if new observations of y and x are progres-
sively gathered, the updating of the estimate aj requires a repeated application
of Equation 12-4. To avoid this expensive calculation, Plackett (1950) rewrote
Equation 12-4 in a “recursive” form in which aj is a linear sum of the estimate
obtained after k-1 observations (i.e., ay-1), plus a correction term based on the
newly-received information y, and x,. This recursive form provides results
mathematically identical to Equation 12-4.

The next step was provided by Kalman (1960), who expanded the work of
Wiener (1949) and solved the general problem of estimating a set of parameters

a, in which:

a, represents, in a more general form, the “state” of a dynamic
system

parametric invariance (i.e., a, = a;;, for all k) is not assumed
any more

the parameters a, vary according to the general stochastic evolu-
tion scheme (“state equation” or “message model”)

ag = F(k, k-—l)ak_l + G(k, k—l)wk (12—5)

where F(k, k-1) is an n x n transition matrix, G(k, k-1) is an
n x m input matrix, and w, is an m x 1 vector of independent
random variables with zero mean and covariance matrix Q.

“noisy” measurements y, = [y1, Y2, .- yp],f are available that are
linearly related to a, by the “observation equation” or “observation
model” :

Ye = Heag + v - (12-6)

where H, is a p x n coefficient matrix and v, is the measurement
error assumed to be a p x 1 vector of independent random vari-
ables with zero mean and covariance matrix R

Then, the equations of the Kalman filtering method allow a recursive com-

putation of

the estimates a',; (j = 1, 2, ...) of ax; by considering only the
effect of the most recent observation y, instead of resolving at
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each time the entire problem by the classical least squares regres-
sion technique

. the estimate of the covariance matrix of the forecasting error
a;y; - a'yy; and, therefore, an important indication of the accuracy
of the estimates aj,; and information on their convergence

In the Kalman filter outlined above, the state vector a, can be any numeri-
cal description of the state of a dynamic system, e.g., the location of a space
ship, concentrations of pollutants in the atmosphere, or a velocity field represent-
ing groundwater dynamics. Then, the transition matrix F contains our (imper-
fect) deterministic representation of the phenomenon (e.g., a set of physical
equations reduced into a linear matrix form(*)), and y, are the limited measure-
ments available. Then the Kalman filter, as outlined below, provides a method
for forecasting the evolution of a,, which takes into account both the “determ-
inistic” component F (predictor) and the continuous, on-line information (correc-
tor) provided by the measurements y; .

Starting from Equations 12-5 and 12-6, it is possible to develop
(Jazwinski, 1970; Sage and Melsa, 1971) an unbiased linear minimum-error—
variance algorithm (Kalman filter) to estimate the state of a linear time-varying
dynamic system driven by white noise of zero mean and known variance. Under
the further assumptions that v, w, and a are mutually uncorrelated, the relevant
formulae, where a(t,|t;) is the estimate at time #; of a(t;), are (**)

. predicted state
Ca(t+1]f) = Ft+1,1) a(t]s) (12-7)
e~ predicted error covariance matrix

Va (t+1]6) =F(t+1,2) V5 (t])) FT(t +1,2) + G(f) V(¢ +1) GT(r)  (12-8)

. filter gain matrix

K(t+1)=Vs(@t+1)t) HT(t+1)
[H(t+1) Vs ¢+ 1]) HT(t+ 1) + V(£ + 1)]?

| (12-9)

(*) Nonlinear Kalman filters are also available, but will not be discussed here.

(**) In the formulae below, time is explicitly indicated by ¢, instead of using the subscript £ as
in the notation of the previous equations.
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. filtered state after processing the observation y(t+1)
at+1jt+1) =a+1|)+K(E+1) [y¢+1)-H(+1) a(t+1]r)] (12-10)
. new error covariance matrix
Vi(t+1)t+1) = [I-K@¢+1) Ht+1)] Vo + 1|0 (12-11)

where Vi (t2)t;) is the covariance of the error a = a(t;) -a(t;]t;) and I is the
identity matrix. See Zannetti and Switzer (1979a) for a rewriting of the above
methodology in a computer-oriented recursive form referred to a forecast per-
formed from 1 to p time steps ahead.

12.3.2 Applications of Kalman Filters to Air Quality Problems

Kalman filters have been used in air pollution problems to obtain more
accurate predicted values in episode forecasting and control. This can be done by
considering a, = a(f) as the vector of concentrations of a pollutant at the grid
points of a grid dispersion model (Bankoff and Hanzevack, 1975; Melli et al.,
1981) or at the pollutant monitoring points (Sawaragi et al., 1976) of the study
area. The state vector a(f) might also be extended to include some additional
adaptive parameters (Bankoff and Hanzevack, 1975), but we will not discuss this
extension here. Then the transition matrix F becomes either the matrix of the
spatial discretization (K-model) of the transport and diffusion equation (Bankoff
and Hanzevack, 1975; Melli et al., 1981) (including time-dependent emission
and meteorological inputs) or a multiple regression matrix (Sawaragi et al.,
1976). Model inaccuracies and emissions and meteorology input errors are in-
cluded in the system noise process w(z).

A hybrid (*) air quality application of the Kalman filter was developed by
Zannetti and Switzer (1979a) who limited the dimension of the state vector a to
the number of air quality monitoring stations, but incorporated the contribution
of the meteorology by having the transition matrix F depend upon the time-
varying meteorological conditions. They evaluated the coefficients of F in an
“adaptive” manner, i.e., using a first-order Markov chain on a learning time
period of given fixed length close to the forecasting time (see previous discussion
at the end of Section 12.2 for a description of the “adaptive” forecasting
technique).

(*) This approach is a hybrid one since the matrix F is not computed using a set of determ-
inistic equations, but is calculated using statistical methods, in which a different matrix F is
estimated for each meteorological class.
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An important problem arises in the application of the Kalman filter to air
pollution problems. In fact, it is necessary to avoid the high dimensionality of the
resulting Kalman filter equations. For example, when F is the time-evolution
transition matrix of the X-model, a simple spatial grid of 20 x 20 x 10 points
produces Kalman filter matrices of dimension 4000 x 4000. Methods have been
developed to simplify this problem. In particular, either the Green function can
be used to reduce the equation of the K~model to a difference equation of rela-
tively small dimension (Hino, 1974), or a discrete form of Chandrasekar-type
equations (*) can be applied for the same goal (Desalu et al., 1974). Alterna-
tively, the region can be partitioned into subregions (Bankoff and Hanzevack,
1975; Melli et al., 1981) and, if the subvectors of the subregions are not coupled
(or are weakly coupled), the filter algorithm can be applied separately to each of
the subvectors, thus reducing the size of the matrices that must be manipulated.
Finally, a multiple linear regression model can be used (Sawaragi et al., 1976)
for F, thus reducing the dimension of the filter to the number of monitoring
stations in the area. However, this loses the “physical” information of the diffu-
sion phenomenon.

An example of use of Kalman filters to forecast air pollution episodes is
shown in Figure 12-8. Note that the forecasting performance of the method
decreases when, instead of using the actual meteorological data, meteorological
forecasts are used.

12.4 RECEPTOR MODELS

Receptor models are the dream of the air pollution experimentalist. A
dream that, till now, has been only partially fulfilled. The basic concept of the
receptor modeling approach is the apportionment of the contribution of each
source, or group of sources, to the measured concentrations without reconstruct-
ing the dispersion pattern of the pollutants. In other words, while dispersion mod-
els compute the contribution of a source to a receptor as the product of the
emission rate by a dispersion factor, receptor models start with observed ambient
aerosol concentrations at a receptor and seek to apportion the observed concen-
trations among several source types (e.g., industrial, transportation, soil, etc.),
based on the known chemical compositions (i.e., the chemical fractions) of
source and receptor materials.

(*) This alternative method completely bypasses direct calculation of the covariance matri-
ces, while still retaining the properties of the Kalman filter.
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Figure 12-8.

Kalman predictions of a four hour-ahead episode with different
meteorological inputs: (a) meteorology is forecast, (b) true meteoro-
logical values are used, (c) meteorology is persistent. From Fronza
et al. (1979). [Reprinted with permission from Butterworth Scien-
tific.]
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In mathematical notation, the concentration c;, of the species i in the k-th
sample at a certain monitoring station can be written as

P
Cix = Z a;; Djx Ej (12-12)
j=1

where p sources (or groups of sources) are assumed to contribute to cj, a; is
the fractional amount of the component i in the emission from the j-th source,
Dy is the atmospheric dispersion term and E; is the emission rate (i.e.,
Dy Ej = S is the total contribution of the source j to the k-th sample in the
receptor). Dispersion models assume a;;, D and Ej, to be known (or obtainable
from emission and meteorological data) and estimate the output c;, . For receptor
models, the concentrations c;; and source “profiles” a;; are measured instead,
and the Dy E; products are computed as a model result.

Receptor models can be classified into four categories (Henry et al.,

1984):
. chemical mass balance (CMB)
. multivariate models
o microscopic models
o v source-receptor hybrids

The first two categories are discussed below.
12.4.1 Chemical Mass Balance (CMB)

Chemical mass balance (CMB) models are based on a sample of n chemi-
cal properties of both source and receptor, thus giving n equations
p I3
= D a;S,i=12 ..n (12-13)
j=1

Then, if p < n, the source contributions §; can be computed by solving the
overdetermined linear system (12-13).

Henry et al., (1984) identify five methods of calculating Sj:

1. the tracer property method, which simply assumes that each source
J possesses a unique species i which is common to no other source
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12.4.2

the linear programming method

the ordinary least-squares method, which estimates §; by minimiz-
ing the sum of squares of the differences between the measured c;
values and those calculated by Equation 12-3 weighted by the ana-
lytical uncertainty of the ¢; measurement

the effective variance least-square method, which includes the con-
sideration of the errors in the a;; terms and provides more reliable
confidence intervals for the outputs S;

the ridge regression, which is one approach useful in handling the
“multicollinearity” problem; i.e., the case when two or more
sources have similar chemical composition (in this case the least-
squares solutions are mathematically unstable)

Multivariate Models

Multivariate models are used to solve Equation 12-12 in which multiple
sampling data (k = 1, 2, ...) are considered. The objective of the multivariate
models is to use the ¢; measurements for predicting

L]

the number p of sources affecting the monitoring station
which a;; is associated with which §;

when possible, both a; and §j

Multivariate methods include (Henry et al., 1984)

factor analysis based on eigenvector analysis of the cross—product
data matrix. (Caution should be used in applying this technique. As
pointed out by Henry (1987), current factor analysis receptor mod-
els are “biased” in the statistical sense and, in inexperienced
hands, can give large errors in source apportionment.)

target transformation factor analysis, for extracting maximum in-
formation about the number and nature of sources with no or very
limited a priori information other than the elemental composition
data (see also Hopke, 1988) :

multiple linear regression, a linear least-squares fitting process
that requires a tracer element to be determined for each source j
(or each source category)

extended Q-mode factor analysis, which is a CMB-type model
(single sample) that uses multivariate methods to deconvolve the
receptor composition into a sum of source compositions
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All the above receptor modeling techniques are still under theoretical and
empirical development. Review papers are provided by Watson (1984), Henry
et al., (1984), and Gordon (1988). Receptor models are becoming a major analy-
sis tool and are much applied, especially for aerosol mass apportionment compu-
tations (e.g., see the article of Scheff el al., 1984, for the Chicago area, and the
article of Chow et al., 1985, for Portage, Wisconsin). Receptor models seem
extremely powerful and promising tools for analyses intended to complement but
not to substitute for the information provided by dispersion modeling techniques.
Actually, mixed dispersion-receptor modeling methodologies (e.g., Chow et al.,
1985) seem to be the most promising. The need for this mixed approach is well
indicated by the schematic illustration presented in Figure 12-9. Much investiga-
tion, however, is still required to assess the degree of reliability of receptor tech-
niques and, especially, their sensitivity to input data errors.
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Figure 12-9.  Schematic illustration of the need to use many different independent
approaches to establish a strong bridge of circumstantial evidence
quantitatively linking a source to its impact (from Cooper, 1983).
[Reprinted with permission from Pollution Atmospherique.]
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12.4.3  Receptor Models for Secondary Particulate Matter

The receptor modeling techniques presented above can simulate only pri-
mary particulate matter. Modifications have been recently proposed (Malm
et al., 1989) to include adjustments that allow the simulation of secondary par-
ticulate matter (primarily sulfates) and deposition phenomena. In mathematical
notation, we can rewrite Equation 12-12 as

Cire = Zj Qijt Ejt Djrt Qijrt (12-14)

where c;,, is the concentration of the species i in the sample at the receptor r
during the time interval ¢, a;;, is the fraction of emission of the species i from
the source j, Ej, is the total emission from source j, Dj, is the dispersion factor
from the source j to the receptor r, and a;;, is the adjustment for gain or loss of
the species i traveling from the source j to the receptor r.

With this approach, sulfur can be traced by a receptor model by including
its emission as SO; and the transformation of some SO, to SO3 . For example,
for sulfur as SO, the term a can be defined as

i = (1-fa) 1-1f) (12-15)

where f, is the mass fraction of SO, that is deposited and f, is the mass fraction
of SO, that is chemically converted to SO%", both before reaching the receptor r.
For sulfur as SO%", we have instead

Qijre = a-£)r (12-16)

where f; is the mass fraction of total sulfur that is deposited before reaching the
receptor r and f, is the same as above.

It is evident that a correct determination of f,, f; and f, requires correct
assumptions on deposition and chemical transformation along the air parcel tra-
jectory and, therefore, the application of some sort of deterministic method. The
practical application of this technique, therefore, requires a hybrid approach, in
which dispersion models still need to be applied to provide the input f,, f;
and f, required by the receptor model.

12.5 PERFORMANCE EVALUATION OF DISPERSION MODELS

The performance of both Lagrangian and Eulerian dispersion models can
be estimated by comparing their predictions against field measurements. Tracer
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experiments are particularly helpful in evaluating the capability of these medels
to properly simulate transport and diffusion. Comparison between model outputs
and measurements are performed using both qualitative data analysis techniques
and quantitative statistical methods.

Initially (say, till a decade ago), this comparison was simple. The outputs
of dispersion models were plotted against measurements and simple parameters
such as the correlation coefficient were computed. High correlation values (a
rare result) indicated that the model was good, low correlation (the most com-
mon case) that the model was poor. It is now clear that the problem is not so
simple.

First of all, there are measurement errors, a fact that often seems forgot-
ten in the common belief that monitoring data are “the real world.” More impor-
tantly, even error-free measurements possess space and time limitations that
prevent their use beyond their “representativeness” regions around the monitor-
ing point. These representativeness regions are often very small and the compari-
son of measurements with grid-averaged model outputs is inappropriate. Second,
certain statistical parameters, such as the correlation coefficient, can provide
misleading results (e.g., Zannetti and Switzer, 1979b). Third, it has been shown
that models possess intrinsic uncertainties (e.g., Venkatram, 1988a) that cannot
be removed and that their outputs are “ensemble” averages, while measurements
are just “realizations” (Lamb, from Longhetto, 1980). Fourth, and most impor-
tant, models rely upon emission and meteorological inputs. Often the errors in
the determination of these inputs fully justify the disagreements between predic-
tions and observations (e.g., Irwin et al., 1987). In other words, the old computer
law “garbage in, garbage out” can happen here, too.

In the last decade, several methods for systematic statistical evaluation of
air quality model performance have been proposed (e.g., see the survey by
Bornstein and Anderson, 1979, and the methodologies proposed by Venkatram,
1982 and 1983). But the most innovative results came from two workshops or-
ganized by the American Meteorological Society. These workshops provided spe-
cific guidelines on the use of statistical tools in air quality applications; a sum-
mary of their recommendations is provided in two papers by Fox (1981 and
1984).

The most interesting comments and recommendations from the above
workshops were

. the concern about the absolute, rather than statistical nature of
U.S. air quality standards
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. the possibility of computing statistics between measured and com-
puted data, even when these data are not coupled in time and/or in
space

. the identification of reducible errors and inherent uncertainties

. the recommendations to decision makers to educate themselves and

accept the challenge of decision making with quantified uncertainty

The second point was and is the most controversial. What this means is that
apples can be compared with oranges, for certain purposes. In fact, a model
forecast of the maximum concentration impact c, at location A at time ¢; can be
compared with the measurement of maximum concentration impact cp at loca-
tion B at a time t,, and if the two values are close, we are allowed to conclude
that, for practical applications, the model can be considered a “good predictor”
of the maximum impact. Scientifically speaking, this is not true; if A is distant
from B and t; is much different from t;, the model clearly does not work prop-
erly and the similarity between c4 and cp is only accidental. Scientifically speak-
ing, models should not just predict well, but they should do it for the right reason.
But for practical regulatory applications, the criterion of “decoupling” concentra-
tion data in space and time should not be seen as a complete scientific aberra-
tion.

The decoupling in space has some acceptable justifications. As illustrated
in Figure 12-10, sometimes plume models work well, but their performance can
be spoiled by small (and quite common) errors in the measurement or the esti-
mate of the wind direction. The decoupling in time, however, is hard to swallow.

Several recent studies have continued to investigate the problem of statisti-
cally evaluating the performance of air quality models. Interesting new methods
were proposed at the DOE Model Validation Workshop, October 23-26, 1984,
Charleston, South Carolina, and by Alcamo and Bartnicki (1987) and
Hanna (1988). Major operational evaluations of air quality models have been
sponsored by EPRI (e.g., Reynolds et al., 1984; Ruff et al., 1984; Moore et al.,
1985; and Reynolds et al., 1985).

Some agreements on performance evaluation seem to be well accepted
today. Terminology, at least, is more clear. Model calibration is the adjustment of
empirical model constants, within their physical bounds, to optimize agreement
with observations. If properly done, calibration is important and acceptable and
should not be referred to as “fudging” or “massaging” results. Model validity is
the “theoretical” ability of the model, with error-free model inputs. Therefore, a
model can be validated against a theory or another model, but not against
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Figure 12-10. Illustration of displacement of observed and predicted ground-level
concentration patterns. Isopleths represent points with the same
concentration. The point-by-point correlation is poor, but the pat-
terns are clearly similar (from Hanna, 1988). [Reprinied with per-
mission from the Air Pollution Control Association.]

measurements. Model evaluation is the quantification of the performance of the
model in real cases with real data. Model verification is the successful validation
and/or evaluation of the model.

For practical applications, several statistical parameters can be used to
evaluate pairs of predicted/observed concentrations. Among them

. The bias, i.e., the average difference of predicted minus observed
values

. The gross error, i.e., the average of the absolute differences

. The variance of the differences

. The correlation coefficient between predicted and observed values

. The regression line, which ideally should have slope one and inter-

cept zero
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The normalized fractional bias FB (Irwin and Smith, 1984) where

= 2, -3.)/(, - ) (12-17)

and ¢,, ¢, are the predicted and observed average concentrations,
respectively. FB varies between -2 and 2 with an optimum value of
zero

The normalized mean square error NMSE (Hanna and Heinold,
1985), where

NMSE = (¢, - ¢0)?/ (S To) (12-18)

where ¢, and c, are the single concentration values
Skill scores (e.g., Murphy, 1988)
Frequency distribution analysis of the differences

Autocorrelation and spectral analysis of the differences. Often, re-
petitive or physically meaningful patterns in the differences can be
identified and removed, thus improving the practical performance
of the model (e.g., a daily cycle in the average difference may
indicate emission input errors and can be empmcally removed to
maximize model performance)

Often data are insufficient for reliable statistical analysis. In this case,
resampling procedures, such as “bootstrap” and “jackknife” techniques can be
used to generate new “synthetic” data sets from the original data using an em-
pirical set of rules (e.g., Heidam, 1987; Hanna, 1987). Finally, we must empha-
size the powerful use of graphical methods for performance evaluation. In many
cases, qualitative observations of multiple time plots, isopleths, cumulative fre-
quency distributions, may say more than a thousand skill scores.

12.6 INTERPOLATION METHODS AND GRAPHIC TECHNIQUES

Several techniques that can be labeled as interpolation methods and
graphic techniques will be discussed in this section. They are:

Kriging
pattern recognition
cluster analysis

fractals
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12.6.1 Kriging

The Kriging technique was originally developed by Matheron (1971). It is
an interpolation technique that possesses three major advantages with respect to
other interpolation methods (Venkatram, 1988b):

1. its interpolations are made with weights that do not depend upon
data values

2. it provides an estimate of the interpolation error

3. it is an exact interpolation since the interpolation at any observa-

tion point is the observation itself

In mathematical notation, observations z(x;) of the variable z at loca-
tions x; allow a Kriging interpolation of z(x) at any point x. Simple Kriging is
done by assuming that

z(x) = m + €(x) (12-19)

where m is a fixed component and € is a stochastic component. Then, the
Kriging estimate z; of z(x;) at a generic point x, is assumed to be a linear
combination of the observations z; = z(x), i.e.,

zp = >k - (12-20)

where the A; are independent of z; and are calculated by variational calculus,
imposing the condition that the ensemble average variance of z, be a minimum.
This condition allows the calculation of the 4; terms and the Lagrangian multi-

plier u.

The variance of the interpolation error is computed by

<(z; -z)?> = Zj Avie + u (12-21)

where the brackets < > indicate ensemble averaging and the semi-variogram yj
is defined by

Vie = <(@Zi-2)%> /2 (12-22)

and quantifies the effects of the stochastic term € on the difference between
z(xj) and z(x;). The term y; cannot be calculated from observations and its
correct determination is the major challenge in the application of the Kriging
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technique. Kriging is good only if the assumed model for yj, i.e., for the spatial
relationships among measurements, is good. Barnes (1980) provides a few
choices for Y. A common, simplifying assumption is often made by assuming
that y; depends only upon the distance |x; - xi|.

The Kriging technique has recently been applied to environmental prob-
lems. Venkatram (1988b) used it with annual averages of sulfur wet deposition in
the eastern United States, and Eynon (1988) applied Kriging to perform a
statistical analysis of chemical measurements in about 10,000 precipitation sam-
ples collected during the period 1979 through 1983 in the eastern United States.
Results seem encouraging, even though Fedorov (1989) claimed that other esti-
mators, such as the generalized least squares (GLS) and the moving least squares
(MLS) can successfully compete with the Kriging technique.

An example of Kriging is given in Figures 12-11 through 12-13. Fig-
ure 12-11 shows locations and values of annual wet deposition sulfur measured
in 1980 in the eastern United States. Figure 12-12 illustrates the simple Kriging
applied to these data, while Figure 12-13 shows a more realistic interpolation in
which the pattern is estimated by a simple statistical long range model. Clearly,
interpolation features improve when some deterministic information is added.

12.6.2  Pattern Recognition

Pattern recognition techniques have been applied to a large number of
fields. These techniques can categorize sets of observations, by graphical meth-
ods, and perform forecasting. The theory of pattern recognition is found in
Nilsson (1965), Arkadev and Braverman (1967), Fu (1968; 1974) and Fukanaga
(1976).

Pattern recognition methods have been applied in atmospheric studies for
air pollution control (Tauber, 1978), to characterize local sources (Edgerton and
Holdren, 1987), and to automatically compute the mixing height from LIDAR
measurements (Endlich et al., 1979).

12.6.3  Cluster Analysis

Methods of hierarchical cluster analysis are frequently applied in many
research fields. A clear and detailed introduction to cluster analysis is given by
Romesburg (1984). This method covers a variety of techniques that can be used
to find out which objects in a set are similar. Cluster analysis is useful for classi-
fication purposes, even though it is used for several other purposes. Cluster
analysis techniques have been applied, for example, to identify sources of
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Figure 12-11.  Locations and values of annual wet deposition of sulfur measured
during 1980. Units are kg ha™ (from Venkatram, 1988). [Re-
printed with permission from Pergamon Press.]
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Figure 12-12.  Pattern of annual sulfur wet deposition derived by applying simple
Kriging to observations shown in Figure 12-11 (from Venkatram,
1988). [Reprinted with permission from Pergamon Press.]



326 Chapter 12: Statistical Methods

Figure 12-13.  Same as Figure 12-12, except that pattern is estimated from sta-
tistical long-range transport model (jrom Venkatram, 1988). [Re-
printed with permission from Pergamon Press.]

particulate matter (Gomez and Martin, 1987) and to perform source apportion-
ment of atmospheric aerosols (Van Borm and Adams, 1988).

12.6.4 Fractals

Fractals are geometric shapes with roughness characteristics that are
qualitatively similar at all scales. Techniques based on the fractals concept were
introduced by Mandelbrot (1975) and have become very popular. In fact, many
lines and surfaces in nature are well depicted by fractals, which, therefore, allow
the production of synthetic, but realistic looking, landscapes. Fractals are useful
for qualitative reproduction of natural phenomena, such as turbulent motion, and
for image compression techniques. Their most interesting application is probably
in conjunction with chaos theories, which were briefly discussed at the beginning
of this chapter.

In atmospheric studies, fractals allow the depiction of turbulent eddies,
the reproduction of the similarity theory, and the numerical simulation of de-
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tailed and complex characteristics of fluid flows. An overview of the application
of fractals to atmospheric sciences is presented by Ludwig (1989).

12.7 OPTIMIZATION METHODS

Optimization needs are often present in air quality studies. For example,
emission reductions should always be.optimized, to allow the most effective re-
ductions within the allowable budgets. The most common application of optimi-
zation methods occurs in the design of a monitoring network, where nonlinear
programming techniques are used to determine the number and disposition of
ambient air quality stations. This determination can be done under different con-
straints (e.g., a primary purpose of a network might be the assessment of
maximum ground-level concentration impact for compliance with air quality
standards). A vast literature exists in this field. Examples of applications are
given by Seinfeld (1972), Noll et al. (1977), Nakamori and Sawaragi (1984), Liu
et al. (1986), and Langstaff et al., (1987).
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