METEOROLOGICAL MODELING

Meteorological models are developed for two purposes:

J to understand local, regional, or global meteorological phenomena

. to provide the meteorological input required by air pollution diffu-
sion models

In both cases, the analytical and numerical techniques are similar. In this book,
we will focus our attention on the second group of meteorological models; i.e.,
on those techniques used as a “pre-processor” of available meteorological infor-
mation in order to prepare the proper input to air quality diffusion models.

Pielke (1984) provides a thorough review of mesoscale (i.e., from a few
kilometers to several hundred kilometers) meteorological modeling techniques.
His book also presents, in Appendix B, a summary of the organizations active in
prognostic numerical mesoscale modeling in 1983 and a list of existing mesos-
cale models, with a description of their major characteristics. Available diagnos-
tic and prognostic models are discussed by Haney et al. (1989).

Meteorological models can be divided into two categories:

J physical models —— physical small-scale models of atmospheric
motion (e.g., wind tunnels)

J mathematical models — a set of analysis techniques (algebraic and
calculus-based) for solving a certain subset of meteorological
equations

Mathematical models can be

o analytical models, in which exact analytical solutions are obtained

. numerical models, in which approximate numerical solutions are
found using numerical integration techniques

In this book, we will discuss only numerical models, currently the most powerful
and promising tools for both meteorological and air quality simulation studies.
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Numerical meteorological models can be divided into two groups:

. diagnostic models; i.e., models that are based on available mete-
orological measurements and contain no time-tendency terms

. prognostic models; i.e., models with full time-dependent equations

Both approaches are discussed below. It must be noted that diagnostic
models, even though they include little physics in their calculations, have the
important advantage of being able to incorporate information gathered from
available measurements. Actually, their performance is strongly dependent upon
the density of meteorological measurements in the simulation region: the higher
the number of stations, the better the performance of the model. Prognostic mod-
els, instead, do incorporate meteorological physics, but cannot use available data
to modify their forecasts, even though “nudging” techniques have been proposed
(e.g., Hoke and Anthes, 1976) to incorporate observations to a certain extent.
One of the major future challenges of meteorological modeling for air quality
applications is the proper linkage of diagnostic and prognostic methodologies, to
take advantage of the best features of both approaches (e.g., by using the Kal-
man filtering techniques discussed in Chapter 12).

4.1 DIAGNOSTIC MODELS

Diagnostic models are based on objective analysis of available meteoro-
logical data. Their outputs are three-dimensional fields of meteorological pa-
rameters derived by appropriate interpolation and extrapolation of available me-
teorological measurements. They are diagnostic because they cannot be used to
forecast the meteorological evolution, but simply provide a best estimate of a
steady-state (or quasi steady-state) condition.

They have been used frequently for evaluating mass-consistent flow fields
in complex terrain (e.g., Anderson, 1971; Danard, 1977; Dickerson, 1978,
Tesche and Yocke, 1978; Sherman, 1978; Liu and Yocke, 1980; Patnack et al.,
1983; Mass and Dempsey, 1985). Ludwig and Bird (1980), in particular, devel-
oped a mass—consistent method based on principal component analysis that
seems quite cost-effective. These mass-consistent flow calculations give satisfac-
tory results (Pielke, 1984) when

J the terrain represents the dominant forcing term
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o sufficient meteorological input measurements are available

Figure 4-1 shows an example of diagnostic model output.
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FIGURE 4-1. Reconstructed wind fields in the Athens basin at a height of 10 m AGL
for 0200, 0800, 1400 and 2000 LST 26 June 1982 (from

Moussiopoulos and Flassak, 1986). [Reprinted with permission from
the American Meteorological Society.]
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Several diagnostic computer packages are discussed below.
4.1.1 IBMAQ-2

The IBMAQ-2 program (Shir and Shieh, 1974) estimates three-
dimensional wind vectors at each point in the computational domain using the
following computational steps:

. An initial-guess wind vector is estimated at each grid point from
the nearest available observation station.

. These initial values are corrected by recomputing, at each grid
point, the wind components as weighted averages of their values at
the adjacent grid points. A weighting factor proportional to 1 /rtis
used, where r is the distance between grid points.

. Each subsequent wind estimate uses the four nearest adjacent grid
points.

4.1.2 NEWEST

The NEWEST subroutine of the IMPACT code (Tran and Sklarew, 1979)
provides three-dimensional fields of stability and wind. Stability measurements
are interpolated using weighting factors proportional to 1/r* and wind measure-
ments are interpolated using weighting factors proportional to 1/r?, where the
r values are the distances between the grid point at which the interpolation is
made and the measurement points. The wind field is then adjusted by a numeri-
cal cycle that makes the wind velocity fields mass-consistent. Finally, thermal
drainage effects (i.e., daytime upslope and nighttime downslope winds) are in-
cluded by adding a vertical wind component wp, where

- 1/2
wp = const (—ITGT—GTAl) (4-1)

in which T; is the ground temperature on the slope and T, is the ambient tem-
perature at the same location.

4.1.3 NOABL

The NOABL package (Phillips and Traci, 1978) provides an accurate rep-
resentation of the terrain by a vertical coordinate transformation in which the
lowest coordinate is conformal to the terrain surface. Figure 4-2 illustrates this
coordinate transformation, from the (x,z) space to the (x,0) space.
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FIGURE 4-2. Terrain coordinate transformation o = % where p is the pres-

sure, p. is the constant pressure at the top of the domain, and p; is
the variable surface pressure (from Phillips and Traci, 1978). [Re-
printed with permission from Science Applications, Inc.]
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4.1.4 MASCON

The MASCON model (Dickerson, 1978) is based on variational calculus
techniques, which are used to adjust the observed horizontal fluxes so they sat-
isfy the continuity equation (similar to the MATHEW model described below).

4.1.5 MATHEW

The MATHEW model (Sherman, 1978; Rodriguez et al., 1982) produces
an average, minimally adjusted three-dimensional wind field, according to the
variational analysis formalism described by the integral function

E@,v,w,2) = jv [@3 u-uo)?+ a2 (v-vo)2+a% (w-w,)? +
(4-2)
A(du/ax + av/dy + ow/az)] dx dy dz

where u(x,y,z), v(x,y,z) and w(x,y,z) are the adjusted wind components calculated
by the model; u,(xy,2), vo(x,y,2) and w,(x,y,x) are the wind observations;
A (x,y,z) is the Lagrangian multiplier; and a;, a; and as are the Gauss precision
moduli (which are related to the observational errors). The above integral is
applied throughout the entire computational domain.

The solution u, v, w is found by minimizing E in Equation 4-2; i.e., by a
combined minimization of both the difference between observed and adjusted
components and the wind divergence. This minimization gives a formula for u, v,
w and a differential equation for A, which can be solved if proper boundary
conditions are provided.

4.1.6 Terrain Adjustment With the Poisson Equation

The objective analysis method of Goodin et al. (1980) performs the fol-
lowing numerical steps:

1. The surface wind field is computed by interpolating wind measure-
ments with a weighting factor proportional to 1/r%.

2. The wind is adjusted to the terrain by solving the Poisson equation

Vo = y(ry) (4-3)

where ¢ is the wind velocity potential and ¢ is a forcing function
based on the thickness of the PBL and terrain elevation gradients.
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3. Upper level winds are interpolated in a terrain-following coordi-
nate system (such as in Figure 4-2), using a weighting factor pro-
portional to 1/r and a five-point filter.

4. Iterations are performed until the maximum divergence of the in-
terpolated wind fields is reduced to an acceptable level.

4.1.7 Mass Consistent Wind Generation by Linear Combination of a Limited
Number of Solutions

Most of the above wind generation schemes provide solutions that are
linear combinations of the input data. A method by Ludwig and Bird (1980)
combines the solutions for several linearly independent data sets in an appropri-
ate way to obtain the solution for any arbitrary input. This is performed by prin-
cipal component analysis, using normalized eigen-vectors.

4.1.8 The ATMOSI1 Code

The ATMOS1 model (Davis et al., 1984; King and Bunker, 1984) calcu-
lates wind fields with the use of a mass conservation error minimization principle
that employs available observations. It provides a three-dimensional wind field
using terrain—following coordinates and an expanded vertical grid system that
insures resolution near the surface where the drainage flow occurs and where
pollutants are normally concentrated.

4.1.9 The Moussiopoulos-Flassak Model

Moussiopoulos and Flassak (1986) developed a mass-consistent model for
the calculation of wind velocity fields over complex orography. Velocities are
adjusted by solving a three-dimensional elliptic differential equation transformed
to a terrain-following coordinate system. One important peculiarity of this model
is the full vectorization of its algorithms, which optimizes running time on array
processing computers. This model was refined by Moussiopoulos et al. (1988) by
improving its numerical algorithms and accounting for atmospheric stability. The
model has been applied to reconstruct wind fields, in the basin of Athens,
Greece.

4.1.10 The MINERVE Code

MINERVE (Geai, 1987) is a mass-consistent wind field model that re-
duces the divergence by an iterative procedure that may take into account atmos-
pheric stability. The code was developed by the Electricite’ de France.
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4.1.11 The Objective Analysis Based on the Cressman Interpolation Method

Fruehauf et al. (1988) developed a computer code for the objective analy-
sis of a two-dimensional field. This code automates the use of a successive
corrections method that interpolates data from irregularly spaced points to a
regularly spaced grid. The program was implemented in a IBM personal com-
puter and contains isopleth analysis routines for standard meteorological fields
such as temperature.

4.1.12 The DWM Code

The DWM code (Douglas and Kessler, 1988) is based on the conserva-
tion-of-mass equation. The model incorporates local surface and upper air ob-
servations, when available, and provides some information on terrain-generated
airflows in regions where local observations are absent. The model is formulated
in terrain-following coordinates and uses a two-step procedure to generate a
gridded wind field. In Step 1, a domain-mean wind is adjusted for terrain effects,
(e.g., lifting and acceleration of the airflow over terrain obstacles, thermody-
namically generated slope flows and blocking effects). In Step ‘2, an objective
analysis procedure is applied in which the observations are used within a user-
specified radius of influence. This Step 2 procedure consists of interpolation,
smoothing, calculation of vertical-velocity field and minimization of the three-
dimensional divergence.

42 PROGNOSTIC MODELS

Meteorological prognostic models are used to forecast the time evolution
of the atmospheric system through the space-time integration of the equations of
conservation of mass, heat, motion, water, and if necessary, other substances
such as gases and aerosols. The following governing equations have been derived
by Pielke (1984):

% _ _y. _
2 - -V (4-4)
B _v-Vo+S, (4-5)
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= = "V VV-(@/0Vp-gk-22xV (4-6)
a:t" = -V+Vg, + 8, n =123 (4-7)

where

@ is the density of the air
V is the wind vector (u,v,w)
0 is the potential temperature

So represents the sources and siu:ks of heat (i.e., freezing/melting, condensa-
tion/evaporation, deposition/sublimation, exothermic/endothermic chemi-
cal reactions, net radiative flux convergence/divergence, dissipation of ki-
netic energy by molecular motion)

p is the pressure
g is the acceleration of gravity
Q is the earth’s angular velocity

gn is the density of the various forms of water (solid, n = 1; liquid, n = 2; and
vapor, n = 3)

Sq, is the source-sink term for g, due to phase change and chemical reac-
tions, where the latter is generally negligible (Sqlz freezing/melting, depo-
sition/sublimation, fallout from above/to below; S, : melting/freezing,
condensation/evaporation, fallout from above/to below, Sq evaporation/
condensation, sublimation/deposition)

(The symbol V is the gradient operator, V- is the divergence, X is the vector
cross product, k is the unit vector along the positive z-axis, and - indi-
cates the scalar product)

Equation 4-4 is the conservation of mass or continuity equation. Equation
4-5 is the conservation of heat derived by assuming the air to behave like an
ideal gas and to be in local thermodynamic equilibrium. (It is derived from the
first law of thermodynamics and the ideal gas law in a form that includes the
contribution of water vapor.) Equation 4-6 is the conservation of motion, accord-
ing to Newton’s second law and contains two external forces, i.e., the pressure
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gradient force and the gravity force (which includes, as usual, the earth’s cen-
tripetal acceleration) and the apparent Coriolis force. Equation 4-6 does not in-
clude the internal forces that would be required to take into account the dissipa-
tion of momentum by molecular motions. Finally, Equation 4-7 is the conserva-
tion of water (solid, liquid and vapor).

Three additional equations — the definition of potential temperature, the
ideal gas law, and the definition of virtual temperature —— complete the above
set:

0 = T, (100/pnp)Re/r (4-8)
p = 0 Rd Tv (4_9)
T, = T (1+0.61 g3) (4-10)

where T, is the virtual temperature, p,;, is the pressure expressed in mb, Ry is
the dry gas constant of the atmosphere (R; = 287 J K™ kg™?), and c, is the spe-
cific heat of the air at constant pressure.

The conservation equations, 4-4 through 4-7, together with the latter
three equations, 4-8 through 4-10, form a set of 11 simultaneous nonlinear par-
tial differential equations in 11 dependent variables: ¢, 6, T, T, p, V, and g,.
The independent variables are the time t and the spatial coordinates x, y, and z.

To be completed, the above set of equations should include conservation
relations for other atmospheric chemical species besides water, e.g., gaseous ma-
terials, such as sulfur dioxide, and aerosols, such as sulfates and nitrates. How-
ever, the simultaneous solution of both meteorological equations and transport,
diffusion, chemical and deposition equations, represent a formidable problem. It
is commonly assumed that the concentrations of primary and secondary atmos-
pheric pollutants do not affect the meteorology. Consequently, prognostic mete-
orological models can be generally applied and can run independently from dis-
persion models.

Meteorological prognostic modeling aims at finding the solution of the
above 11 equations or a subset of them. However, they must be modified and
simplified to be solved. For practical applications, these equations are never used
in the form shown above. Actual numerical simulations, in fact, require that the
11 variables and the sink-source terms be averaged in space, over grid volumes,
and in time, over a computational interval At. Grid volume averaging is com-
monly performed using the Reynolds assumption, in which each variable a is
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decomposed into an average term plus a subgrid perturbation (i.e., a =@+a’'),
where the average of the subgrid perturbation is assumed to be zero (i.e.,
a’ = 0). This process, however, creates new additional variables, in the form of
average subgrid scale fluxes. This phenomenon is called the “closure” problem.

For example, Reynolds averaging of Equation 4-6 generates new terms,
because of the nonzero correlations among the components of V’, the subgrid
perturbation of V. And Equation 4-5 generates new cross correlation terms be-
tween @', the subgrid perturbation of 6, and the components of V’. Usually these
new variables (or turbulent fluxes) cannot be defined in terms of basic observa-
tion principles and, therefore, solutions are found only through semiempirical
assumptions. The simplest assumption is the so-called K-theory (or gradient the-
ory), which relates these fluxes to the gradients of the average variables through
proportionality terms called eddy coefficients. (Closure and K-theory are dis-
cussed in more detail in Chapter 6 in the context of transport and diffusion of an
atmospheric pollutant.)

To reduce, modify or simplify the above equation, scale analysis is often
used. Scale analysis (the method that determines the relative importance of the
individual terms in the conservation relations; Pielke, 1984) is a major tool for
identifying and eliminating terms whose contribution can be considered negligi-
ble for a certain range of applications. Scale analysis allows, in particular, the
definition of the shallow convection form of the continuity equation (or incom-
pressibility assumption)

ou ov ow
fded) _ — =0 4—
ox ¥ ay ¥ 9z (“4-11)

the hydrostatic equation (derived from the vertical component of Equation 4-6
for the atmosphere at rest)

ap

£ = - 4-12

" (4 (4-12)
and the evaluation of the geostrophic wind (ug, V)

Uy = — — (4-13)

s (4-14)
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which is generally used as a boundary condition at the top of the computational
domain.

Further modifications and simplifications of the conservation equations
are obtained using averaging techniques and assumptions such as:

. Different parameterizations of the subgrid scale correlation terms,
i.e, the turbulence fluxes (a solution to the closure problem)

. The Boussinesq approximations, in which pressure, density and
temperature are expressed as the sum of equilibrium values plus a
small correction due to atmospheric motion (in practice, the Bous-
sinesq approximations assume that the temporal variations of the
density can be neglected, except in the vertical component of
Equation 4-6). These approximations lead to considerable simplifi-
cations (Seinfeld, 1986), including Equation 4-11.

. A simplified density-weighted mesoscale scalar vorticity, instead of
the full vorticity equation in tensor form (Pielke, 1984)

Various sets of simplified equations can be derived from the above scale
analyses and averaging processes. Each set, however, must be used with a clear
understanding of its physical limitations with respect to the original group of
equations 4-4 through 4-10.

Each set of simplified equations represents a group of simultaneous non-
linear partial differential equations. The nonlinearity is given by the presence of
products of dependent variables and is one of the major obstacles to obtaining
exact (i.e., analytical) solutions.

Linearization techniques, e.g. harmonic (Fourier) analysis, have been
used (Pielke, 1984) to derive approximate sets of linear equations, consequently
allowing, under certain simplifying assumptions, the identification of their ana-
lytical solution. In the past, these methods represented the only possible analysis
tools, in spite of their limitations and shortcomings. Today’s fast computers allow
the evaluation of approximate solutions (i.e., numerical solutions) of a set of
nonlinear equations and, therefore, represent the best tool in this field.

Numerical solutions can be computed using the following techniques:

o finite difference schemes

. spectral techniques
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. pseudo-spectral methods

o finite elements

. interpolation schemes

o boundary element methods
. particle models

Numerical solutions depend strongly on boundary conditions and initial
values; thus, when using numerical methods, special care must be taken to cor-
rectly initialize all meteorological variables in the computational domain and to
correctly define the time-varying physics at the boundaries.

Several prognostic meteorological models have been developed. Unfortu-
nately, however, most of them are complex research tools whose correct use
requires the active involvement of their developers. A comprehensive list of
mesoscale numerical models and their characteristics is presented in Appendix B
of Pielke (1984). Additional information can be found in reviews of available
mesoscale models prepared by Pielke (1988) and Haney et al. (1989).

Among these studies, the development of four advanced meteorological
models has been particularly important for air quality applications: 1) the three-
dimensional URBMET vorticity-mode model developed by Bornstein et al.
(1987); 2) the primitive equation-mode model NMM (Numerical Mesoscale
Model) developed by Pielke et al. (1983); 3) the three-dimensional hydrody-
namic model HOTMAC (Higher Order Turbulence Model for Atmospheric Cir-
culations) by Yamada (1985) and Yamada and Bunker (1988); and 4) the NCAR/
PSU/SUNY model, which is used in the Regional Atmospheric Deposition Model
(RADM) (Chang et al., 1987). All four models have been linked with dispersion
models: URBMET and the NCAR model have been linked with K-theory grid
models, while Pielke’s model and HOTMAC are linked with Lagrangian particle
simulation codes (see Section 8) (Pielke’s model is also linked with the Urban
Airshed Model discussed in Section 14.1.1).

4.2.1 The URBMET Model

The URBMET model introduces the stream function and three-
dimensional vorticity vector into the equation of conservation of motion 4-6. A
few assumptions allow Equation 4-6 to be simplified and applied to the upper
portion of the PBL, more precisely the portion above the surface layer. These

assumptions are (Bornstein et al., 1985):
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. The atmosphere is Boussinesq. In practice, this assumption allows
us to ignore temperature-induced density fluctuations in the hori-
zontal terms of Equation 4-6 and produces the incompressible form
of the continuity equation.

. The atmosphere is hydrostatic. Consequently, vertical velocities
must be computed for conservation of mass.

o Turbulence can be described by eddy coefficients, and horizontal
diffusion is characterized by a constant eddy diffusivity.

o Mean thermodynamic and dynamic variables can be defined as the
sum of several parts (constant synoptic forcing plus spatial and
temporal variations arising only from mesoscale motions).

With the above assumptions, the three components of Equation 4-6 be-
come

ﬁl_l__’- o(uu) . a(vu) . a(wu) __1 dpu

ot Tar oy Tz g U

4-15
o2 (1, 38, g, )
az\'™az) ™M ax? 8y
ﬂ+ a(uv) . a(w) N a(wv) . 1 opm fu-uy
ot ox ay 0z Q0a Oy (4-16)
9 v v v
o G R
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R
where
0. is the density (constant volume average)
Py is the mesoscale atmospheric pressure
fis the Coriolis parameter defined by Equation 3-3

ug, vy are the geostrophic wind components defined by Equations 4-13
and 4-14
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Ky is the vertical momentum eddy transfer coefficient

K5 is the horizontal momentum eddy transfer coefficient

We can relate the velocity V = (¥,v,w) to the stream function vector
Y= (¢’ -y, 0) by

V=VxWw (4-18)
Consequently, we obtain

e (4-19)

0z
y o 92 (4-20)

0z
w = -(a—"’ + ﬂ’i) (4-21)

ox ay

and, by introducing the relative vorticity vector (§, n, {), we obtain

ov ow ov

= — - — = e 4-
§ 0z ay 0z (4-22)
ou ow ou
= — - — = — 4-23
n 0z ox 0z ( )
ov ou
s o (4-24)

where the last equalities in Equations 4-22 and 4-23 are valid for a hydrostatic
PBL.

Further manipulation allows the derivation of the following vorticity equa-
tions for horizontal motion

o o) o(E) oawb) u av
o ax oy oz *%"’(f"a)

(4-25)

£ 0, F 75 o
+ 0, oy + FYe) Ky 6) +Kmh(ax2 + ayz



88 Chapter 4: Meteorological Modeling

o _ oGy dvm) dwm) . v E(f— B_u)
o ox ay 0z ay ay
(4-26)
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With appropriate boundary and initial conditions, Equations 4-19, 4-20,
4-21, 4-22, 4-23, 4-25, and 4-26 are solved in the URBMET model, thus pro-
viding the dynamics of V without solving the primitive Equations 4-15, 4-16
and 4-17.

4.2.2 The NMM Model and the ARAMS System

Pielke et al. (1983) developed the NMM model to provide reliable mesos-
cale meteorological simulations in regions of complex orographies (coastal zones
and complex terrain). The model simulates three-dimensional circulations with
horizontal grid intervals from 1 km to 10 km. The model, a primitive equation
model assuming an incompressible, hydrostatic and noncondensing atmosphere,
which has been in widespread use by a number of investigators during the 1980s,
performed reasonably well in simulating basic sea breeze circulations and other
topographically generated mesoscale flow regimes. Model evaluation has been
encouraging (e.g., Segal and Pielke, 1981; and Pielke and Mahrer, 1978).

During 1987-88, a major effort was launched to unify the original
“Pielke” model with the nonhydrostatic cloud scale model developed at Colorado
State University by Professor William Cotton. The combined Pielke-Cotton
model (called ARAMS) greatly expands the range and sophistication of the simu-
lations possible using a mesoscale numerical model.

The Advanced Regional Atmospheric Modeling System (ARAMS) is a
generalized, comprehensive and flexible numerical weather prediction system. It
is the commercial, tested and documented version of the Colorado State Univer-
sity mesoscale model. The model has evolved over a 15-year period and repre-
sents the blending of three different models (two hydrostatic models and a non-
hydrostatic cloud model).

ARAMS has the ability to address specific areas of concern by using a
two-way interactive nesting scheme between the fine grid and the next coarser
grid. The number of grid nests and grid levels in ARAMS is limited only by



4.2 Prognostic Models 89

computer constraints. This allows maximum resolution in the area of coastlines,
sea breeze fronts and steep terrain. The grid nesting allows one to use a large
enough grid size to resolve large-scale (synoptic) features while also nesting to a
level in which smaller scale forcing (sea breezes, mountain upslope flows, etc.)
can be resolved. ARAMS contains options ranging from different initialization
schemes to a variety of cloud microphysical parameterizations. Some of the op-
tions may be changed between nests. A partial listing of model options includes

. spatial dimension: one-, two-, or three-dimensional

. forecast duration: several hours to five days

U variable horizontal and vertical domains

. multiple nested grids

. horizontal grid sizes: 100 + km to as small as 50 meters
J vertical levels: up to 38

o finite differencing (two schemes)

. turbulent closure (three schemes)

. hydrostatic or nonhydrostatic

. variable coordinate systems: telescoping, interactive, nested
. cloud microphysics (four schemes)

. precipitation parameterization (five schemes)

. radiation schemes (three short wave, two long wave)

. surface temperature (four schemes)

. lateral boundary conditions (three schemes)

U topography: flat or with terrain

. use: uniform or variable

o sea surface temperature: uniform or variable

] upper boundary conditions (five schemes)

. initialization (five schemes)

4.2.3 The HOTMAC Model

The HOTMAC model was originally developed by Yamada (1978 and
1985) and further improved by Yamada and Bunker (1988), who added a “nested
grid” capability and improved the simulation of the morning transition by includ-
ing the effects of shadows produced by the terrain. The unique characteristic of
this model is its treatment of turbulence by a second-moment turbulence-closure
assumption. The model uses a terrain-following vertical coordinate and
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integrates its partial differential equations by using the ADI (alternating direction
implicit) method and a time increment that satisfies the Courant-Friedrich-Lewy

criteria.
4.2.4 The NCAR/PSU/SUNY Model

The NCAR/PSU/SUNY model (Chang et al., 1987; Seigneur, 1988; Lewel-
len et al., 1989) is an hydrostatic primitive-equation model that is used to simu-
late the meteorological fields in the central and eastern United States for acid
deposition calculation. The code is capable of simulating cyclogenesis, low-level
jets, land-sea breezes, forced airflow over rough terrain, frontal circulation, and
mesoscale convective systems.

4.2.5 Non-Hydrostatic Models

The hydrostatic assumption of Equation 4-12 is commonly used in mete-
orological models. Models that do not use this simplification are called non-
hydrostatic and require the solution of the vertical equation of motion and a
prognostic or diagnostic equation for pressure. These models demand enormous
computational efforts and, therefore, their past and current application has been
limited.

Pielke (1984) has shown that, when the hydrostatic assumption is used in
meteorological models with terrain-following coordinate systems, the terrain
slope must be much less than 45° (e.g., 5°) to assure a correct representation.
Also, many studies concluded (Fast and Takle, 1988) that nonhydrostatic effects
generally become more important in neutral conditions or when the horizontal
length scale is smaller than 1-3 km.

Few nonhydrostatic models are available (e.g., Clark, 1977, Tapp and
White, 1976) and require large computational resources. Quasi-nonhydrostatic
assumptions can be used, however, to simulate flow over simple terrain features.
For example, Fast and Takle (1988) derived a parameterization of the non-
hydrostatic pressure and incorporated it into an hydrostatic model. Tests show
that this approach is able to reproduce many of the terrain-induced characteris-
tics that the hydrostatic model failed to simulate.
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