EULERIAN DISPERSION MODELS

Air pollution diffusion can be numerically simulated by several tech-
niques, which are mainly divided into two categories:

1. Eulerian models

2. Lagrangian models

Each of these has advantages and disadvantages in the treatment of atmospheric
phenomena. Several authors, and in particular Lamb (from Longhetto, 1980),
have investigated the two approaches and their interrelationships in detail, as
outlined in Figure 6-1.

The basic difference between the Eulerian and Lagrangian view is illus-
trated in Figure 6-2, in which the Eulerian reference system is fixed (e.g., with
respect to the earth) while the Lagrangian reference system follows the average
atmospheric motion.

This section presents the fundamentals of the Eulerian approach and the
major Eulerian modeling techniques for atmospheric diffusion. Lagrangian meth-
ods are discussed in Chapter 8, while Gaussian dispersion models, which can be
seen as both Eulerian and Lagrangian, are presented in Chapter 7. A discussion
of the methodologies that have been used to evaluate dispersion models against
measurements is presented in Section 12.5.

6.1 THE EULERIAN APPROACH

The Eulerian approach is based (Lamb, from Longhetto, 1980) on the
conservation of mass of a single pollutant species of concentration c(x,y,z,t).

%% = _V-Vc+ DV +3S (6-1)
which is similar to Equation 4-7 for the conservation of water, but has the addi-
tional (often negligible) molecular diffusion term D V3¢, where D is the molecu-
lar diffusivity (about 1.5 . 1075 m? s™? for air), V2 = 92/ 3x2 + 92/ 8y* + 0%/ 9z*
is the Laplacian operator, and V is the gradient operator.
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FIGURE 6-2. Eulerian (a) and Lagrangian (b) reference systems for the
atmospheric motion.
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We assume that the velocity V can be represented as the sum of “average”
and “fluctuating” components, i.c.

V=a+u (6-2)

where T represents the portion of the flow that is resolvable using measurements
or meteorological models, and u’ is the remaining unresolvable component. We
also assume

c = <c> +¢ (6-3)

where < > denotes the ensemble (theoretical) mean, whose meaning is clarified
below. Then, substituting Equations 6-2 and 6-3 in 6-1 and taking the ensemble
average, we obtain

d<Cc>

Framiiie T-V<c> - Ve<cdu>+ D V2> + <85> (6-4)

in which, according to the ergodic hypothesis, it is assumed that <u> = @
and <u’> = 0.

Meteorological models have a large unresolved portion u’, which is often
of the same order of magnitude as @. Therefore, the term <c’u’> is very large
and contains most of the turbulent atmospheric diffusion eddies, whose disper-
sion effects are orders of magnitude larger than the molecular ones. Even with a
perfect meteorological model providing detailed information about W(x,y,z,t)
(i.e., @ = V), the spatial and temporal scales of the smaller turbulent eddies are
so small that a correct numerical integration of Equation 6-4 would be practi-
cally impossible (it would probably require a grid size of about 1 mm in the
entire computational domain; Wyngaard, from Nieuwstadt and van Dop, 1982).

The understanding of u’ as an unresolvable component that can be mini-
mized but never eliminated is the key to understanding the significance of ensem-
ble averaging. Lamb (from Longhetto, 1980) clarifies this point by noting that u’
is a stochastic variable; i.e., there exists an infinite family of functions u’ that
satisfy the equation of motion. The situation is described in Figure 6-3, where
each possible member u’ of the family generates a different concentration c. The
average, at a certain point and time, of all possible concentrations generated by
the different u’ gives the “theoretical” ensemble mean <c>. Naturally, if we could
measure u’ and ¢ continuously and everywhere, we could evaluate the exact
member of the family that has occurred in reality. Lacking this information, we
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Figure 6-3.  The infinite family or ensemble of velocity functions u’ and the corre-
sponding family of concentration distributions, each portrayed at fixed
points x, and x; as functions of time. The subscript n, n=1,2... ,
denotes the member or realization of the ensemble. The ensemble
mean value <c> at a given time t, is formed by averaging c(x,t;)a
over the infinite ensemble, as indicated by the vertical dashed line
(adapted from Lamb; in Longhetto, 1980).

must assume that all theoretically acceptable u’ are equally possible, thus allow-
ing, in the best possible conditions, the computation of <c> instead of the
actual c.

An important conclusion is that the output <c> provided by all Eulerian
models is conceptually different from the air quality data gathered from monitor-
ing activities. In fact, monitoring data provide estimates of the actual concentra-
tion c (with a certain degree of error associated with the monitoring technique),
while model outputs are estimates of <c> (with a certain degree of error because
of the input data and the numerical and/or analytical approximations). There-
fore, even during ideal conditions (i.e., with no monitoring and modeling errors)
model outputs will still differ from concentration measurements. This is often
called the intrinsic (unremovable) uncertainty in dispersion modeling.
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Another important point can be derived from the analysis of the term
V . <c’u’> in Equation 6-4. This term introduces three new unknowns. There-
fore, the solution of Equation 6-4 requires a relation between the meteorological
input terms or the average terms <c> and these three additional unknowns. The
simplest approximation (phenomenological closure) is given by the so-called
K-theory or gradient-transport theory, in which

<c'u>= -KV <c> (6-5)

where K is a (3 x 3) turbulent diffusivity tensor whose elements can be estimated
from the output of a meteorological model or inferred from meteorological
measurements.

Lamb (1973) evaluated the conditions of validity of Equation 6-5. He
concluded that K-theory is applicable only when 7./T, << 1, where 7. is the
maximum time over which an average atmospheric turbulent eddy maintains its
integrity and T, is the time scale of the <c> field, i.e., d<c>/dt = <c>/T; . There-
fore, the K-theory is applicable when the changes in the mean concentration field
<c> have a larger scale than that of turbulent transport, a condition that is com-
monly violated near strong isolated sources (where T, is short), especially with
large wind direction horizontal meandering or unstable conditions (i.e., large 7.).

The assumption of Equation 6-5 has, then, a limited applicability and has
shown major limitations, especially for the treatment of point sources in unstable
conditions. More complex formulations (higher order closure schemes) have
been proposed for evaluation <c‘u’> and are discussed in Section 6.5.1.

Equation 6-4, with the assumption of Equation 6-5, is generally further
simplified by assuming that (1) the tensor K is diagonal; (2) the molecular diffu-
sion is negligible; and (3) c represents the concentration of a nonreactive pollut-
ant (i.e., <S> = §, as discussed below). With these simplifications, Equation 6-4
becomes the “semiempirical equation of atmospheric diffusion,”

a;‘? = -0'V<c> + V- KV<c> + § (6-6)

where the elements of K are zero, except along its main diagonal (Ki,
Ka2, K33). Equation 6-6 can be integrated (analytically or numerically) if the
inputs @, K and S are provided, together with initial and boundary conditions

for <c>.



6.1 Eulerian Approach 113

In the case of a single source in stationary (i.e., g < ¢ >/dt =0) emission
and meteorological conditions, the source term is commonly treated as an up-
wind boundary condition. For an average wind speed 7 (x,y,z) blowing toward the
positive x-axis, the following boundary condition applies in the upwind boundary
plane (y,z):

<> = ?(oy_gﬁhi 8(z -2 - AR) 8(y-y,) 6-7)

where Q is the pollutant emission rate, z; is the physical height of the source
located in (0,;), Ah is the plume rise, and & is the Kronecker operator. Using
this boundary condition and assuming a steady state, Equation 6-6 becomes
simply

V<> = V-KV<c> (6-8)

el

The integration of either Equation 6-6 or Equation 6-8 requires a full
specification of boundary conditions. Total reflection conditions are generally
assumed at the ground and at the top of the computational domain (which is
generally the top of the PBL); i.e.,

Kss a<c> -0 (6-9)
0z

which indicates a pollutant flux equal to zero. In order to consider dry deposition
phenomena at the ground surface, the following condition is often assumed in-
stead of Equation 6-9 at z = 0 (i.e., at ground level)

K3 a<ac> =V, <c> (6-10)
Z

which indicates a nonzero pollutant flux, where V, is the deposition velocity,
which is a function of meteorological conditions (e.g., atmospheric stability),
pollutant type and surface type. Measured deposition velocities for SO, are
presented in Figure 6-4, while deposition velocity ranges for several gases are
listed in Table 6-1.
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Figure 6-4. SO, deposition velocity summary for different surfaces. From Sehmel
(1980); see that paper for references mentioned in the figure. [Re-
printed with permission from Academic Press.]
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Table 6-1.  Deposition velocity range for gases. From Schmel (1980); see this

paper for the references mentioned in the table.

-mission from Academic Press.]

[Reprinted with per-

Number of Depositing Deposition velocity
references gas range, cm s~}
14 S0, 0.04-7.5
20 I 0.02-26
2 HF 1.6-3.7
1 ThB 0.08-2.6
1 Fluorides 0.3-2.4
1 Cl, 1.8-2.1
7 0; 0.002-2.0
1 NO, 1.9
2 NO Minus-0.9
1 PAN 0.8
3 NO, Minus-0.5
1 H,S 0.015-0.38
1 Co, 0.3
1 (CH3),S 0.064-0.28
5 CHs! 107 -1072
1 Kr 2.3 x 107" max

On the sides (x,2) and (y,2) of the computational domain, it is generally

assumed

or

or (Shir and Shieh, 1974)

<c>=0

<c> = background value

VZ <c>=0

(6-11)

(6-12)

(6-13)
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where V, is the horizontal Laplacian operator V§ = 92/ ax* + 9%/ 8y*. The latter
condition, Equation 6-13, represents a linear extrapolation of the concentration

field outside the boundary.

Initial conditions are also required for the interpretation of Equation 6-6,
which is time-dependent, and are generally specified by Equations 6-11 or 6-12
throughout the entire computational domain or, in special cases (e.g., Runca,
1977), by a pseudoanalytical plume equation that provides the initial concentra-
tion field <c> near the point source(s) and eliminates the difficulties related tc
the numerical approximation of the S function (i.e., the source term).

If chemical reactions are involved, the assumption <S> = § is no longer
valid, and the term <S> must be investigated further. We can say that (using cn
instead of ¢ for the concentrations of all species; where m = 1, 2, . . . M) the
source term is

S =

m m

+ R, + Pep, (6-14)

where S, (x,y,2,t) is the total rate of addition (or removal) of the m-th species;
E., (x,y.21) is the direct emission of the m-th species (primary emission);
R.,, (x,y,2,t) is the creation/removal term of the m-th species by chemical reac-
tions and is a function of the meteorology (especially ambient temperature and
solar radiation) and, in general, of the concentration of all pollutants c;,
€2, - - - Cu, in (x,y,2) at time ¢; and P, (x,y,z,t) is the removal term for ¢, due to
precipitation, and is a function of meteorological variables (such as precipitation
rate) and the type m of species. Equation 6-14 does not include dry deposition,
which is treated as a boundary condition by Equation 6-10.

The ensemble average <S.,,> is a function of <R.,,>, which, in general, is
a nonlinear function of ¢y, ¢z, . . . ¢m. Thus, the averaging process <R., > creates
new additional variables of the type <cjcj>, with i, j=1, 2, . . . M. The most
common approximation for avoiding the generation of these new variables is

<R, (c1,¢2,...cM) > = Rc,(<c1>, <C2>,... <Cpr>) ' (6-15)
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Again, however, Lamb (1973) showed that the above approximation may be a
crude one. His analysis of a simple second-order decay reaction

m

R, = -B .c,z,, = -B(<m> +Cp )2 (6-16)
shows that the approximation of Equation 6-15, i.e.,

<R, > = -B<cp>? (6-17)
is valid only when
B<Cmax> Te<< 1 (6-18)

Equation 6-18 requires the decay process to be slow (i.e., a small ) compared
with turbulent transport time scale. Many photochemical reactions, however, are
quite fast and, therefore, do not allow this approximation.

Equations 6-6 or 6-8 can be solved in two ways:

1. by analytical methods, providing exact solutions

2. by numerical methods, providing approximate solutions

These two approaches are discussed below.

6.2 ANALYTICAL SOLUTIONS

Analytical solutions are available for the steady state Equation 6-8 under
special, simplifying assumptions. The available formulations have been discussed
by Pasquill and Smith (1983), Seinfeld (1986), and Tirabassi et al. (1986). In
particular, Roberts (see Calder, 1949) obtained a two-dimensional solution for
ground-level sources; Smith (1957) found a solution for elevated sources with &
and K, profiles following Schmidt’s conjugate law; Rounds (1955) proposed a
more general solution, which, however, turned out to be valid only for linear
profiles of K;; finally, Yeh and Huang (1975) and Demuth (1978) obtained a
more general analytical solution, which is presented below. This latter solution
has been incorporated into an organized computer package, KAPPA-G (Tirabassi
et al., 1986), which allows the performance of three-dimensional steady-state
simulations using the Gaussian formula for the treatment of horizontal diffusion
(as proposed by Huang, 1979).
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Remembering that in Equation 6-8 the wind & is assumed to blow towards
the positive x-axis, we can use the notation

Ky = K, (6‘20)
K2 = K, (6-21)
Kss = K, (6-22)

Therefore, Equation 6-8 can be written

Eic=i(Kzic)+—a—(Ky-a—c) (6-23)
ox 0z 0z ay ay

with boundary conditions

_ 9 - =
= 3 ") 0(z - h,) 6(y) atx = 0 (6-24)
and
K L 0 atz=0,h (6-25)
i, C =0,

where h, is the final effective height of the emission (i.e., A, = z; + Ah), h is the
depth of the mixing layer, y; = 0, and

0
i—c| >

ox

i(K ic)l | (6-26)

ax\ “ox

Equation 6-26 assumes that atmospheric dispersion along the x-axis is negligible
in comparison to the transport term.

To integrate Equation 6-23 we define the crosswind integrated concentra-
tion

+ ®

T(x,2) = f c(x,y, 2)dy (6-27)

-
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We also make the following assumptions

(2) = uo(z/ho)® (6-28)
Ky(x,2) = u(2) fx) (*) (6-29)
K:(2) = Kao(z/ho)P (6-30)
and
h = +oo (6-31)

where kg is the height at which ug and Ko are measured (or evaluated) and f(x)
is any function of x. Then the solution of Equation 6-23 for ground level concen-
tration (z = 0) is (Yeh and Huang, 1975)

w0 = T waky o H’Z%] (632
where
A=a-8+2 (6-33)
v = (1-p/A (6-34)
y = (@ + 1)/A (6-35)
n = (a+p/a (6-36)
r=p8-a (6-37)

and I' denotes the Gamma function.

With a finite mixing height (i.e., & < + o) and h, < h (and with the other
assumptions unchanged), the solution of Equation 6-23 is (Demuth, 1978)

- 20qh§ b-1 (Oy) RY) o) (x)
cx,0) = ha+1 { +RP Z T(y) 4/1 (Uy(z)) o7-1

Ko x
- exp ( y(z) q 20 ]}
0 Uo

(*) This particular assumption, however, will be used only for deriving Equation 6~44, below.

(6-38)
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where
R = h./h (6-39)
p=(©1-p8/2 (6-40)
q = A/2 (6-41)

In Equation 6-38, J, (...) represents the Bessel function of the first kind and
order 7, and oy (i=1,2,...) are its roots, i.e., J (0y)) = 0

The solutions given by Equations 6-32 and 6-38 represent the case when
z = 0, i.e., the concentration is computed at ground level. If elevated integrated
concentrations ¢(x,z) need to be evaluated, the new solution, for & = +co, is easily
obtained from Huang (1979), giving

B r A
_ he)” h ug by (2 + b 2 uo hf (z h)4
e = GETIR e (et )1, (2 -

where L, (...) is the modified Bessel function of the first kind and order - v

If A < +wo, the integrated concentration C(x,z) is again obtained from
Demuth (1978), giving

tx,2) =

20qh8 ZRY & | d-1(0yw RY) Jy-1(0y (2/R)7)
% ug { i +( 2 [ 51 (9y)

. Yy 4" B0 X q Ko x
exp ( T W hyu ”

Tirabassi et al. (1986) verified, analytically or numerically, that as z — 0,
the limit of Equations 6-42 and 6-43 gives Equations 6-32 and 6-38, respec-
tively; and that, as h — +oo, the limit of Equations 6-38 and 6-43 gives Equa-
tions 6-32 and 6-42, respectively.

(6-43)

The above formulae deal with the crosswind integrated concentration
&(x,z). If we want to calculate the three-dimensional concentration ¢(x,y,2), hori-
zontal diffusion needs to be included in a way that satisfies Equation 6-29. If we
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assume that the plume has a Gaussian concentration distribution in the horizontal
with lateral standard deviation 0,(x), we obtain

2
c(x,y,2) = ¢(x,2) 3]17;- exp(- 2})—02) (6-44)
Y y

Equation 6-44, together with any function & (x,z) previously derived, can be used
for three-dimensional simulations, since the Gaussian assumption for horizontal

diffusion gives

d
dx

<

K, = (6-45)

(STRS

which satisfies the condition of Equation 6-29.

6.3 NUMERICAL SOLUTIONS

Numerical methods allow the computation of approximate solutions of
Equations 6-6 and 6-8 using integration techniques such as

. finite difference methods

. finite element methods

. spectral methods

. boundary element methods
. particle methods

The reader should refer to books on numerical analysis for further discussion of
the above numerical techniques.

Finite difference methods (Richtmyer and Morton, 1967) are the oldest
technique. Although they possess several disadvantages, they still represent the
major and most applied (and best understood) numerical tool for this type of
applications. However, finite-difference approximation of the advection term
@ - V<c> always produces a diffusion-type error that artificially increases the
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diffusion rates in the simulated concentration output. This numerical phenome-
non can be easily understood by analyzing the one-dimensional version of the

advection term, i.e.,
e _ g% (6-46)

With a simple first-order finite-difference scheme, we obtain

t t t
cf't -l _ —t Civ1 — Ciy (6-47)

A YT oAx

where subscripts indicate spatial discretization (with a grid size Ax) and super-
scripts indicate time discretization (with interval At). The analysis of the trunca-
tion terms (Johnson et al., in Stern, 1986) shows that the error € generated by
the approximation of using Equation 5-47 instead of Equation 5-46 is

€ = ﬁzﬁ"- (1 - 7 At/Ax) (3%/3x?) (6-48)
which is a diffusion-type term, with associated diffusity D, equal to

73

D, =
2

(1 - 7T At/Ax) (6-49)

The term D, is proportional to the grid size Ax and, especially in regional
modeling where grid sizes have typical values of 80 km, generates an artificial
diffusion that can easily reach values of the same order of magnitude as (or even
greater than) actual atmospheric diffusion, which makes model outputs almost
meaningless. Several methods have been proposed to reduce this error (Egan and
Mahoney, 1972; Runca and Sardei, 1975; Boris and Book, 1973, who proposed
the SHASTA method; Pepper et al., 1979, who used cubic splines and chapeau
functions; Zalesak, 1979, who extended the concept of flux corrected transport,
FCT, to any number of dimensions; Lamb, 1983, who developed the BIQUINTIC
method for his regional scale photochemical model; Orszag, 1971, who first in-
troduced the pseudospectral method; etc.). Numerical evaluations of most of
these methods by Chock and Dunker (1983) and Schere (1983) show that a
“best” approach cannot be identified for all situations, and that some schemes,
like SHASTA, which used to be widely used in photochemical simulation pack-
ages, produce unacceptably large amounts of artificial diffusion.
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In spite of several shortcomings of K-theory and grid discretization, this
approach plays a major role in air pollution simulations, especially when non-
linear chemistry is required (as for the evaluation of O5 impacts). One could
argue that the errors introduced by this technique pale in comparison to the
assumptions introduced by the Gaussian plume model discussed in Chapter 7.

While analytical solutions require special, simplified functional forms for
K (i.e., power laws of the altitude z), numerical solutions can accommodate for
virtually any function K(x,y,z,£). Several of these functions have been proposed
for evaluating Ky, the horizontal eddy diffusivity (which assumes Ki; = K23 = Ky
for any wind direction angle with the x-axis), and K, the vertical eddy
diffusivity.

6.3.1 The Vertical Diffusivity K,

The vertical diffusivity K, is generally specified as a function of the alti-
tude z. For example, McRae et al. (1982) use

4/3 1/4
K, = 25w, z [kzi] [1 -15 (%)] (6-50)

in the unstable surface layer (i.e., 0 < z/z; < 0.05) and
K, = w, z; fz/z)) (6-51)

in the unstable PBL above the surface layer, where

2 3 4
flzlz) = 0.021 + o.4os(-’-) + 1.351(i) - 4.096(—2—) + 2.560(—5—) (6-52)

i Zj Z;

for 0.05 < zi < 0.6,
1

flzlz) = 0.2 exp [6 - 10(5)] (6-53)
for 0.6 < zi < 1.1, and
flzlz) = 0.0013 (6-54)
for zi, > 1.1.

Therefore, the eddy diffusivity K, is ~ 0 for z ~ 0 and z > z;, and has a
maximum (=~ 0.21 w, z;) when z/z; ~ 0.5, as shown in Figure 6-5.
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In neutral conditions, Shir (1973) adopts

K, = ku,zexp(-8zf/u.) (6-55)

where f is the Coriolis parameter defined by Equation 3-3, while Myrup and
Ranzieri (1976) propose,

K, = ku.:z (6-56)

in the surface layer (i.e., 2/z < 0.1), and, above the surface layer,

K, = ku,z(1.1-2/z) (6-57)
1.2
10 <
z 4
z'l o8
06 <4
os 4 i _
|
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|
oz + }
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0 : + t +L
(] 0.08 0.10 0.1 0.20
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Wel;

Figure 6-5.  Vertical turbulent diffusivity profile under unstable conditions (from

McRae et al., 1982). [Reprinted with permission from Academic
Press.]



6.3 Numerical Solutions 125
for 0.1 < z/z; < 1.1, and
K, =0 (6-58)
for z/z; > 1.1.

Finally, in stable conditions, Businger and Ayra (1974) propose

ku,z 8fz
k= STavanan ©F (—) (6-59)

*

More discussion about the evaluation of K, can be found in Seinfeld
(1986). It is clear, however, that we do not possess a definite knowledge of K,
above the surface layer and that the application of the K-theory to simulate verti-
cal dispersion during unstable conditions is highly questionable.

6.3.2 The Horizontal Diffusivity Ky

The evaluation of Ky presents several intriguing aspects. It is often (and,
perhaps, improperly) assumed that

Ky = Ky (6—60)

where K, is the crosswind eddy diffusivity (i.e., with wind blowing along the
positive x-axis). If we consider a plume originated at x = 0 and carried by the
wind along the x-axis, K, is related, through Equation 6-45, to the standard
deviation g, (x) of the crosswind plume concentration spread. where Equa-
tion 6-45 is valid for a travel time ¢, which is

t » T, (6-61)

where T, is the Lagrangian time scale (typically of the order of 100-200 s). The
integration of Equation 6-45 gives

ox) = V2K x/u = J2K,t (6-62)

which would require ¢, to grow linearly with x%°. But the analysis of data on
horizontal dispersion does not confirm Equation 6-63, as illustrated in Fig-
ure 6-6. These data show a peculiar property of atmospheric horizontal diffu-
sion, i.e., its accelerating rate. This phenomenon, whose rate can be justified
only partially by the theoretical analysis of Taylor (1921), seems to suggest
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(Gifford, 1982) that atmospheric diffusion is augmented by the presence of large
scale quasihorizontal turbulent wind-field heterogeneities, caused by large-scale
surface inhomogeneities of various kinds.

Figure 6-6 clearly shows that the choice of K, (or Ky) strongly depends
upon the travel time ¢ by several orders of magnitude. This creates the paradox
that, if we want to estimate Kz in a certain location (x,y,z), for example the
center of a grid cell, different values of Ky would be required for the different
pollutants coming from different sources, and therefore, having different travel
times. An Eulerian grid model cannot really handle this, since, after pollutants
are injected into the grid cells, the memory of their different origin is lost. This
entire discussion points out a further limitation of K-theory in describing atmos-
pheric diffusion.

Another disturbing aspect of the numerical interpretation of the K-theory
equation to simulate horizontal diffusion is that the effective eddy diffusion is the
sum of Ky plus the contribution D, generated by the numerical advection errors
(a diffusion term, as explained at the beginning of Section 6.3). In many cases,
D, > Ky, which may explain (McRae et al., 1982) why the influence of changes
in Ky in the large range 0-500 m?s™! is small in the concentration field, as
presented by Liu et al. (1976). Due to the numerical error D,, a
K-theory model needs to use nonzero Ky values only during unstable conditions,
in which, for example, we can use the formula

Ky = 01w,z = 0127* (kL) u, (6-63)
derived from the measurements of Willis and Deardorff (1976).

A final important consideration about Ky derives from the definition of
Equation 6-2, in which the wind vector V is divided into two components, & and
u’, where U represents the large portion of the flow that is resolvable using mete-
orological measurements or models and u' is the remaining unresolvable compo-
nent. Clearly, the better the meteorological model or the interpolation of the
measurements, the higher the time- and space-resolution of the term @ and the
smaller the |u’| values.

This interpretation of Equation 6-2 is very important since that equation is
often used to indicate an intrinsic property of the atmospheric motion (an average
term plus turbulent fluctuation) instead of being interpreted as the sum of a
resolvable and unresolvable component. This is a key issue in understanding the
turbulent diffusion terms <c'u’> which have been approximated using the
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Figure 6-6.  Summary of data on horizontal atmospheric diffusion, from Hage
and Church (1967), as presented by Gifford (1982). The solid curve

illustrates the empirical equation of Hage et al. (1967). [Reprinted
with permission from Academic Press.|

K-theory by Equation 6-5, where K is a (3 x 3) turbulent diffusivity tensor. From
the previous definition of w’, it is clear that the better the meteorological model
providing T, the lower the |<c'u’>| terms and, consequently, the lower the magni-
tude of the elements of K. In other words, we derive the important (and, to a
certain extent, surprising) conclusion that the 2ddy diffusion coefficients to be
used in a diffusion model are a function of the degree of performance of the mete-
orological model used to calculate the meteorological input to the dispersion
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model. This is particularly true for horizontal dispersion, since vertical velocity
components are generally small in comparison with horizontal transport and,
consequently, u’ has a larger horizontal than vertical component.

In order to understand and fully evaluate the consequences of the above
considerations, let us discuss a brief example related to long-range transport and
horizontal diffusion of a plume from a point source. According to Hanna et al.
(1977) and Irwin (1979), for downwind distances x greater than 10 km, the hori-
zontal plume standard deviation g, is

0, = 33.30px!/? (6-64)

where gy is the standard deviation of the horizontal wind direction expressed in
radians. Using Equations 6-62 and 6-64, we obtain

K, = 10°c3u2 = Ky (6-65)

For typical values of 0y < 0.5 radians and u < 10 m/s, Equation 6-65 gives
Ky values one to two orders of magnitude lower than the bottom of the range of
Ky = 10% to 107 m? s! currently used in most long-range models and consid-
ered to be the best values to fit actual measurements. This inconsistency can be
easily explained using the considerations presented before. In fact, Equa-
tions 6-64 and 6-65 implicitly assume that the plume trajectory is known exactly
and that ¢, (and Kpy) characterize only the plume horizontal growth and not the
uncertainty in plume location. Actual modeling simulations, however, use or calcu-
late meteorological wind fields, which possess a large degree of uncertainty when
used for trajectory computations. Therefore, it is not surprising that actual model
calibration tests suggest large values of Ky (10* to 107 m? s7! instead of
10?2 to 10°m? s7!). This indicates that horizontal diffusion needs to be artificially
enhanced for the model to incorporate the uncertainties in the meteorological
modeling computation of U.

In order to visualize the above considerations, let us consider the simple
example in Figure 6-7, in which the contributions of three air pollution sources
(S1, Sz, and S3) at the receptor R are evaluated through a dispersion model
using large Ky values. Even though the model largely overestimates horizontal
diffusion, it provides a total concentration value at R (the sum of the three
dashed curves) that is quite similar to the measured value (on the solid curve),
due to error compensation factors. The model is, in a way, “validated,” but its
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Figure 6-7.  An example of the consequence of overestimating horizontal diffusion
on the concentration at the receptor R. Solid lines show the actual
average plume, while dotted lines show the plume as simulated by
the model.

use for evaluating emission reduction strategies will provide incorrect results;
specifically, it will suggest useless emission reductions in §; and S; and insuffi-
cient control of S;.

It is true that regular fluctuations in wind direction cause the solid plumes
in Figure 6-7 to sweep around the azimuth in such a way that they all may
envelop the receptor R. This variation of the short-term average wind can
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sometimes be correctly simulated, for long-term averages, by the dashed plumes,
which are computed with an enhanced horizontal diffusion. However, wind direc-
tion fluctuations often do not show regular behavior and, therefore, do not sup-
port the above approximation. In complex terrain, especially, preferred direction
patterns play important roles in determining plume trajectories, and the artificial
enhancement of horizontal diffusion for long-term averages may provide incor-
rect results. Moreover, if nonlinear chemical reactions are used, the formation of
secondary pollutants is incorrectly computed when the plume is diffused with
artificially high dispersion rates, since the centerline plume concentration is
consistently underestimated.

This discussion, which is valid only for the particular location of the re-
ceptor R, can, however, be generalized to illuminate a critical problem in most
long-range air pollution modeling studies using K-theory grid models. In order to
compensate for uncertainties in wind direction information, these models almost
always over-estimate horizontal diffusion in a process that smoothes concentra-
tion peaks. With “smooth” emission source terms and wind frequency distribu-
tions, this assumption is quite acceptable, but, in many cases, this smoothing
process creates a loss of deterministic information related to the source-receptor
relationship. This loss becomes particularly critical when selective emission re-
duction strategies are inferred from modeling outputs in order to meet air quality
goals at the receptor R.

6.4 BOX MODELS

6.4.1 The Single Box Model

The single box model (Lettau, 1970) is the simplest air pollution model
and is based on the mass conservation of pollutant inside an Eulerian box, which
generally represents a large area such as a city. The physical concept underlying
the box model approach is depicted in Figure 6-8. Mass conservation gives

—:—t (cz) =Q -c¢ z,-—Au—x (6-66)

which, by integration, gives (Venkatram, 1978)

ct) zi(t) = c(to) z:(t;) exp (-t/Ty) + Q Ty (1-exp(-#/Tp))  (6-67)
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If the dynamics of z;(t) are known, Equation 6-67 allows the computation
of c(#). In stationary conditions (i.€., ¢ = ), ¢ tends to the limit

(@) = QT/z (6-69)

which is sometimes a reasonable quasistationary assumption in urban studies.
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Figure 6-8.  The single box model; z; indicates the time varying mixing height, Ax
and Ay are the horizontal dimensions of the box (e.g., the size of the
city under investigation), Q is the constant emission for unit of area,
C is the time-varying average concentration inside the box, and u is
the constant wind speed injecting clean air into the box.

The single box model has frequently been applied for both inert and reac-
tive pollutants; in the latter case, Equation 6-66 has to be modified to incorpo-
rate a chemistry module in the mass-balance computations. As a particular ex-
ample of its application, Meszaros et al. (1978) used a box model for computing
the atmospheric sulfur budget over Europe and incorporated both natural/
anthropogenic emissions and dry/wet deposition in Equation 6-66. Also, Jensen
and Peterson (1979), who used an acoustic sounder for evaluating z(t), found
good agreement between the single box model output c(?) and urban concentra-
tion measurements.
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anthropogenic emissions and dry/wet deposition in Equation 6-66. Also, Jensen
and Petersen (1979), who used an acoustic sounder for evaluating z; (1), found
good agreement between the single box model output c(t) and urban concentra-
tion measurements.

6.4.2 The Slug Model

Venkatram (1978) showed that the box model has a great deal of inertia
and cannot properly handle rapid temporal changes in either O or u. He proposed
the slug model as an improvement of the box model, especially during stagnation
episodes. The slug model allows the concentration ¢ to vary in the along-wind
direction x and in the vertical direction z, but assumes that the concentration does
not vary in the crosswind direction y. This allows us to write the mass-
conservation equation within the single box in terms of two dimensions (x, z) as

a(c z) acz) _ _
5 T4 T - 0 (6-70)

where x is the downwind distance inside the box. We define the average concen-
tration at x to be T(x), where

zj(x)
z(x) z(x) = j c(x, 2) dz (6-71)
0

and z; (x) is either the mixing height or the vertical size (growing with x) of the
“urban plume” generated by the ground level emission Q.

The solution of Equations 6-70 and 6-71 after the emission is shut off
(i.e., after Q becomes zero) is

c(x,t) = (x-ut ;_(%7 (6-72)

for t < x/u, and
cx,t) = 0 (6-73)
for t > x/u. For t = T;, the above scheme properly gives ¢ = 0 throughout the

entire box, whereas the single box solution of Equation 6-67 is not able to repro-
duce this complete flushing.



6.5 Advanced Eulerian Models 133

6.4.3 Multi-Box Models

The single box concept has been extended to multi-box simulations (e.g.,
Ulbrick, 1968; Reiquam, 1970; Gifford and Hanna, 1973). Johnson (in Stern,
1976) describes the multi-box model in its simplest form by the equation

Ac;; = [(F‘—I/Z,j - i+1/z.j) + (Fi.j-l/z - Fl,j+1/2) + Qij Atl/V (6-74)

where Ac; ; is the variation of the average concentration ¢;,; in the box i, j during
the time interval At; i, j are the box horizontal indices; Q;,; (1) is the pollutant
emission rate from all sources inside the box; and V is the volume of the box
(ie., V = Ax Ay h, where h is the height of the box above the ground).
F represents the pollutant flux through the sides of the box; i.e.,

Fis12,j = Ci,jAiz1y2,j Wiz1/2,) (6-75)

Fijr1/2 = €ijAijx1/2 Wijx1/2 (6-76)

where A is the area of the side of the box, u the wind velocity component perpen-
dicular to A, and the 1/2 term in the indices indicates the side between one cell
and the other (e.g., i+1/2 means between i and i+1, and j-1/2 means between J-1

and )).

The two major limitations of this multi-box approach are its neglect of
horizontal dispersion and the assumption of instantaneous mixing throughout the
box (especially in the vertical). It is, however, computationally fast and, in sev-
eral cases, may provide satisfactory, cost-effective answers, especially in regions
in which detailed meteorological and emission information is not available.

6.5 ADVANCED EULERIAN MODELS

Because of the several shortcomings of the K-theory described in the pre-
vious sections, more complex Eulerian formulations for simulating atmospheric
diffusion have been proposed. Among them, two have received particular atten-
tion: second-order closure modeling (e.g., Lewellen and Teske, 1976) and large
eddy simulation techniques (e.g., Nieuwstadt and de Valk, 1987).

6.5.1 Second-Order Closure Modeling

t

Instead of using the K-theory approximation of Equation 6-5, an exact
equation (Donaldson, 1973) can be computed for the second-order correlations
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<c'u’>. This equation, however, introduces new variables, other than second-
order correlations, that leave the system undetermined. A second-order closure
model finds a relation between these new variables and the previous ones (i.e.,
the second-order correlations and the mean flow variables). Using this approach,
Lewellen and Teske (1976) obtained a partial differential equation for the turbu-
lent mass flux that has a dual behavior: for the initial plume, characterized by a
plume scale that is smaller than the ambient turbulence scale, the equation shows
hyperbolic behavior, while, for larger plume scales, the equation shows a smooth
transition to parabolic behavior. Only the latter feature can be described well by
the K-theory.

The model of Lewellen and Teske (1976) was successfully compared with
laboratory simulations (Deardorff and Willis, 1974) of diffusion in convective
conditions. The model was able to predict the rise of the maximum concentration
from the ground. Comparisons with data collected during tracer experiments,
however, were less encouraging (Lewellen and Sykes, 1983) and neither the pat-
terns nor the magnitude of plume concentrations were correctly predicted. There-
fore, the practical applicability of higher-order closure models is still question-
able, even though some recent results (e.g., Enger, 1986) have shown encourag-
ing features.

Second-order closure techniques have also been used to define new plume
and puff methodologies. Sykes et al. (1989a) developed the Second-Order Clo-
sure Integrated Plume Model (SCIMP), the model with the lowest resolution in a
hierarchy of models developed for EPRI. The model was tested against approxi-
mately 500 hours of plume data and seems to perform better than standard U.S.
EPA regulatory models (such as MPTER). Sykes et al. (1989b) also developed
the Second-Order Closure Integrated Puff model (SCIPUFF), the intermediate
resolution member of the hierarchy of models mentioned above. The overall per-
formance results of SCIPUFF were close to those obtained with SCIMP.

6.5.2 Large Eddy Simulation Models

As described by Nieuwstadt and de Valk (1987), a large eddy model such
as those developed by Deardorff (1974) and Nieuwstadt et al. (1986), calculates
the large-scale turbulent motions by directly solving a set of modified Navier-
Stokes equations. These equations are
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. a “filtered”(*) momentum equation with extra subgrid terms

. a “filtered” temperature equation with extra subgrid terms

. a Poisson equation for the pfessure

. gradient transfer equations for the closure of all the extra terms

describing the subgrid motions.
. an equation for the subgrid energy

These equations are solved (typically using finite—-difference methods) with grids
of about 50 to 100 m and time steps of about 5 s.

Using the output of the Deardorff (1974) model, Lamb (1978) success-
fully simulated the statistics of nonbuoyant particles in convective conditions.
Nieuwstadt and de Valk (1987), instead, used a conservation equation for the
contaminant, which is solved concurrently with the large eddy model. This sec-
ond approach is able to replicate well the laboratory experiments by Willis and
Deardorff (1981), who reproduced the behavior of a nonbuoyant contaminant in
convective conditions. This good agreement was not recreated using a buoyant
plume simulation and comparing it with the experiments of Willis and Deardorff
(1983). However, further work by van Haren and Nieuwstadt (1989) shows a
reasonable agreement between the output of the large eddy simulation model and
the buoyant plume field experiments performed by Carras and Williams (1984).

In conclusion, large eddy simulation models seem promising and repre-
sent the approach that is closest to the recreation of the physics of atmospheric
diffusion. Their simulation of buoyant plumes, however, needs further study.
Also, it is possible that other computational techniques, such as Monte-Carlo
Lagrangian particle models (see Chapter 8), will be able to show similar simula-
tion ability at a lower computational cost, by reproducing the main stochastic
behavior of atmospheric motion without explicitly solving the Navier-Stokes
equations.

(*) By “filtering,” we mean the elimination of the small-scale motions that are smaller than
the numerical grid.



136 Chapter 6: Eulerian Dispersion Models

REFERENCES

Boris, J., and D.L. Book (1973): Flux-corrected transport. I. SHASTA, a fluid transport
algorithm that works. J. Comput. Phys., 12:38-69.

Businger, J.A., and S.P. Ayra (1974): Heights of the mixed layer in the stable, stratified plane-
tary boundary layer. Adv. Geophys., 18A:73-92.

Calder, K.L. (1949): Eddy diffusion and evaporation in flow over aerodynamically smooth and
rough surfaces: A treatment based on laboratory laws of turbulent flow with special refer-
ence to conditions in the lower atmosphere. Quart. J. Mech. Math., 2:153.

Carras, J.N., and D.J. Williams (1984): Experimental studies of plume dispersion in convective
conditions — 1. Atmos. Environ., 18:135-144.

Chock, D.P., and A.M. Dunker (1983): A comparison of numerical methods for solving the
advection equation. Atmos. Environ., 17(1):11-24.

Deardorff, J.W., and G.E. Willis (1974): Physical modeling of diffusion in the mixed layer.
Proceedings, Symposium on Atmospheric Diffusion Air Pollution sponsored by the
American Meteorological Society, Santa Barbara, California, September.

Deardorff, J.W. (1974): Three-dimensional numerical study of the height and mean structure
of a heated planetary boundary layer. Boundary-Layer Meteor., 7:81-106.

Demuth, C. (1978): A contribution to the analytical steady solution of the diffusion equation
for line sources. Atmos. Environ., 12:1255-1258.

Donaldson, C. duP. (1973): Construction of a dynamic model of the production of atmospheric
turbulence and the dispersal of atmospheric pollutants. Proceedings, Workshop on
Micrometeorology sponsored by the American Meteorological Society, Boston,
pp. 313-392.

Egan, B.A., and J.R. Mahoney (1972): Numerical modeling of advection and diffusion of
urban area source pollutants. J. Appl. Meteor., 11:312-322.

Enger, L. (1986): A higher order closure model applied to dispersion in a convective PBL.
Atmos. Environ., 20:879-894.

Gifford, F.A., and S.R. Hanna (1973): Modeling urban air pollution. Atmos. Environ.,
7:131-136.

Gifford, F.A. (1982): Horizontal diffusion in the atmosphere: a Lagrangian-dynamical theory.
Atmos. Environ., 16:505-512.

Hage, K.D., P.S. Brown, G. Arnason, S. Lazorick, and M. Levitz (1967): A computer program
for the fall and dispersion of particles in the atmosphere. Sandia Corporation Report SC-
CR-67-2530, The Travelers Research Center, Inc.

Hage, K.D., and H.W. Church (1967): A computer-programmed model for calculation of fall
and dispersion of particles in the atmosphere. Proceedings, USAEC Meteor. Info. Meeting,
Chalk River Nuclear Labs., 11-14 Sept. 1967, pp. 320-333. Atomic Energy of Canada,
Ltd., Report AECL-2787.



6.5 Advanced Eulerian Models 137

Hanna, S.R., et al. (1977): AMS Workshop on Stability Classification Schemes and Sigma
Curves — Summary of Recommendations. J. Climate and Appl. Meteor.,
58(12):1305-1309.

Huang, C.H. (1979): A theory of dispersion in turbulent shear flow. Atmos. Environ.,
13:453-463.

Irwin, J.S. (1979): Estimating plume dispersion — A recommended generalized scheme. Pre-
sented at 4th Symposium on Turbulence and Diffusion, sponsored by the American Mete-
orological Society, Reno, Nevada.

Jensen, N.O., and E.L. Petersen (1979): The box model and the acoustic sounder, a case
study. Atmos. Environ., 13:717-720.

Lamb, R.G. (1973): Note on application of K-theory to turbulent diffusion problems involving
chemical reaction. Atmos. Environ., 7:235.

Lamb, R.G. (1978): A numerical simulation of dispersion from an elevated point source in the
convection layer. Atmos. Environ., 12:1297-1304.

Lamb, R.G., and D.R. Durran (1978): Eddy diffusivities derived from a numerical model of the
convective planetary boundary layer. Nuovo Cimento, 1C:1-17.

Lamb, R.G. (1983): A regional scale (1000 km) model of photochemical air pollution. Part I,
Theoretical formulation. U.S. EPA Document EPA-600/3-83-035. Research Triangle

Park, North Carolina.

Lettau, H.H. (1970): Physical and meteorological basis for mathematical models of urban diffu-
sion processes. Proceedings, Symposium on Multiple-Source Urban Diffusion Models. U.S.
EPA Publication No. AP-86.

Lewellen, W.S., and M.E. Teske (1976): Second-order closure modeling of diffusion in the
atmospheric boundary layer. Boundary-Layer Meteor., 10:69-90.

Lewellen, W.S., and R.I. Sykes (1983): Second-order closure model exercise for the Kincaid
Power Plant Plume. Electric Power Research Institute Report EA-1616-9, Palo Alto,

California.

Liu, M.-K., D.C. Whitney, and P.M. Roth (1976): Effects of atmospheric parameters on the
concentration of photochemical air pollutants. J. Appl. Meteor., 15:829~835.

Longhetto, A., Ed. (1980): Atmospheric Planetary Boundary Layer Physics. New York, El-
sevier.

McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Mathematical modeling of photochemi-
cal air pollution. Environmental Quality Laboratory Report No. 18, Pasadena, California.
Also see: McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Development of a second
generation mathematical model for urban air pollution. I. Model formulation. Atrmos. En-
viron., 16(4):679-696.

Meszaros, E., G. Varhelyi, and L. Haszpra (1978): On the atmospheric sulfur budget over
Europe. Atmos. Environ., 12:2273-2277.



138 Chapter 6: Eulerian Dispersion Models

Myrup, L.O., and A.J. Ranzieri (1976): A consistent scheme for estimating diffusivities to be
used in air quality models. California Department of Transportation Report CA-DOT-
TL-7169-3-76-32, Sacramento.

Nieuwstadt, F.T., and H. van Dop, Eds. (1982): Atmospheric Turbulence and Air Pollution
Modeling. Dordrecht, Holland: Reidel.

Nieuwstadt, F.T., R.A. Brost, and T.L. van Stijn (1986): Decay of convective turbulence, a
large eddy simulation. Proceedings, 199 Euromech meeting on Direct and Large Eddy
Simulation of Turbulence, Munchen, 1985, Braunschweig/Weisbaden, Germany: Friedr.

Vieweg & Sohn.

Nieuwstadt, F.T., and J.P. de Valk (1987): A large eddy simulation of buoyant and non-
buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environ.,
21(12):2573-2587.

Orszag, S.A. (1971): Numerical simulation of incompressible flows within simple boundaries. 1.
Galerkin (spectral) representations. Stud. Appl. Math., 50:293-326.

Pasquill, F., and F.B. Smith (1983): Atmospheric Diffusion, Third Edition. New York: Halsted
Press, John Wiley and Sons.

Pepper, D.W., C.D. Kern, and P.E. Long, Jr. (1977): Modeling the dispersion of atmospheric
pollution using cubic splines and Chapeau functions. Atmos. Environ., 13:223-237.

Reiquam, H. (1968): Atmos. Environ., 4:233.

Richtmyer, R.D., and K.W. Morton (1967): Difference Methods for Initial-Value Problems.
New York: Interscience Publications, John Wiley & Sons.

Rounds, W. (1955): Solutions of the two—dimensional diffusion equation. Trans. Am. Geophys.
Union, 36:395.

Runca, E., and F. Sardei (1975): Numerical treatment of the dependent advection and diffu-
sion of air pollutants. Atmos. Environ., 9:69-80.

Runca, E. (1977): Transport and diffusion of air pollutants from a point source. Proceedings,
IFIP Working Conference on Modeling and Simulation of Land, Air and Water Resource
System, Ghent, The Netherlands.

Schere, K.L. (1983): An evaluation of several numerical advection schemes. Atmos. Environ.,
17:1897-1907.

Sehmel, G. (1980): Particle and gas dry deposition: A review. Atmos. Environ., 14:983.

Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John
Wiley & Sons.

Shir, C.C. (1973): A preliminary numerical study of atmospheric turbulent flows in the ideal-
ized planetary boundary layer. J. Atmos. Sci., 30:1327-1339.

Shir, C.C., and L.J. Shieh (1974): A generalized urban air pollution model and its application

to the study of SO, distributions in the St. Louis metropolitan area. J. Appl. Meteor.,
13:185-204.



6.5 Advanced Eulerian Models 139

Smith, F.B. (1957): The diffusion of smoke from a continuous elevated point source into a
turbulent atmosphere. J. Fluid Mech., 2:49.

Stern, A.C., Ed. (1976): Air Pollution. 3rd Edition, Volume 1. New York: Academic Press.

Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989a): A hierarchy of dynamic
plume models incorporating uncertainty. Volume 3: Second-order closure integrated model
plume (SCIMP). A.R.A.P. Division of California Research & Technology, Inc., Final Re-
port EA-1616-28, Vol. 3, Princeton, New Jersey.

Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989b): A hierarchy of dynamic
plume models incorporating uncertainty. Volume 4: Second-order closure integrated puff.
A.R.A P. Division of California Research & Technology, Inc., Final Report EA-6095, Vol.
4, Princeton, New Jersey.

Taylor, G.I. (1921): Diffusion by continuous movements. Proceedings, London Math. Soc.,
20: 196-211.

Tirabassi, T., M. Tagliazucca, and P. Zannetti (1986): KAPPA-G, a non-Gaussian plume
dispersion model: Description and evaluation against tracer measurements. JAPCA,
36:592-596.

Ulbrick, E.A. (1968): Socio-Encon. Plan. Sci., 1:423.Venkatram, A. (1978): An examination
of box models for air quality simulation. Armos. Environ., 12:2243-2249.

van Haren, L., and F.T. Nieuwstadt (1989): The behavior of passive and buoyant plumes in a
convective boundary layer, as simulated with a large-eddy model. J. Appl. Meteor.,
28:818.

Willis, G.E., and J.W. Deardorff (1976): A laboratory model of diffusion into the convection
planetary boundary layer. Quart. J. Royal Meteor. Soc., 102:427-445.

Willis, G.E., and J.W. Deardorff (198 1): A laboratory study of dispersion from a source in the
middle of the convectively mixed layer. Atmos. Environ., 15:109-117.

Willis, G.E., and J.W. Deardorff (1983): On plume rise within a convective boundary layer.
Atmos. Environ., 17:2935-2447.

Yeh, G.T., and C.H. Huang (1975): Three-dimensional air pollutant modeling in the lower
atmosphere. Boundary-Layer Meteor., 9:381.

Zalesak, S.T. (1979): Fully multidimensional flux~corrected transport algorithms for fluids.
J. Comput. Phys., 31:335-362.







