7 GAUSSIAN MODELS

7.1 THE GAUSSIAN APPROACH

The Gaussian plume model is the most common air pollution model. It is
based on a simple formula that describes the three-dimensional concentration
field generated by a point source under stationary meteorological and emission
conditions. The Gaussian plume model is visualized in Figure 7-1, where, for
simplicity, the plume is advected toward the positive x-axis. In a general refer-
ence system, the Gaussian plume formula is expressed by
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where c(s,r) is the concentration at r = (x,y,2) due to the emissions at
s = (X5, )5 25); Q@ is the emission rate; 0,(jx, d) and 0,(j,,d) are the standard de-
viations (horizontal and vertical) of the plume concentration spatial distribution
(often oy, is referred to as g); j, and j, are the horizontal and vertical turbulence
states (further discussed below); d is the downwind distance of the receptor from
the source, where

d = [(r-s)-a/|al (7-2)

U is the average wind velocity vector (&, &, i;) at the emission height (it is as-
sumed that i, < (Z2+%2)"/2); A., is the crosswind distance between the recep-
tor and source (i.e., between the receptor and the plume centerline), where

Aoy = (r=s|* -d)'/? (7-3)

and Ah is the emission plume rise, which is a function of emission parameters,
meteorology and downwind distance d. Equation 7-1 is applied for d > 0; if
d <0, then ¢ = 0.
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Figure 7-1.  The Gaussian plume in a wind-oriented coordinate system (i.e., x
along the direction of ©): (a) an elevated source location at (0,0,H)
(from Dobbins, 1979). [Reprinted with permission from Academic
Press.] (b) three-dimensional concentration profiles (from Strom; in
Stern, 1976). [Reprinted with permission from Wiley-Interscience.]
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As can easily be seen, Equation 7-1 refers to a stationary state (i.e., c is
not a function of time), uses meteorological conditions (wind and turbulence
states) that must be considered homogeneous and stationary in the modeled area
(i.,e., between s and r), and cannot work in calm conditions where |&|-0. How-
ever, the simplicity of the Gaussian approach, its relative ease of use with easily
measurable meteorological parameters and, especially, the elevation of this
methodology to the quantitative decision-controlling level (U.S. EPA, 1978) have
stimulated research aimed at removing some of the limits of the Gaussian theory
in treating the complex situations of the real world.

Equation 7-1 is generally written in the form

__ 9 RN AT Y (h-zY
i rrar exp[ > (ay)]exp[ 2( p )] (7-4)

in which & is the average horizontal wind speed, A, is the effective emission
height (i.e., h. = z; + Ah), and g, replaces ¢,. Here a wind-oriented coordinate
system is also used (as in Figure 7-1). Equation 7-4 can be derived in several
ways from different assumptions (see Section 7-10) and can be justified by
semiempirical considerations, as Figure 7-2 illustrates, where both the instanta-
neous and the one-hour average concentration distributions are exemplified. It

y y y
]
|
|
Jl

Source Xo Xf———— ——— ]
—=>
u
Instantaneous X 1-hour X
at x =x, average at x =x,
(a) ()] ()

Figure 7-2.  (a) Instantaneous top view of a plume; (b) instantaneous horizontal
profile of the plume concentration along a transverse direction at
some distance downwind from the source; (c) one-hour average pro-
file for the same downwind distance (from Williamson, 1973). [Re-
printed with permission from Addison-Wesley.]
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can be concluded that, even though instantaneous plume concentrations are quite
irregular, a sufficiently long averaging time (e.g., one hour) generates, in many
cases, bell-shaped concentration distributions that can be well approximated by
the Gaussian distribution in both the horizontal and (to a lesser degree) the

vertical.

One area of particular emphasis has been the identification, for both sim-
ple and complex meteorological or terrain situations, of those parameters that
allow Equation 7-4 to give a good estimate of the maximum ground-level con-
centration. Other applications have used Equation 7-4 in a “climatological” way
to provide long-term concentration averages (monthly, seasonally, or annually)
at the receptors (e.g., Martin, 1971; Runca et al., 1976). In these climatological
applications, each concentration computed by an equation similar to Equa-
tion 7-4 is weighted by the frequency of occurrence of its corresponding mete-
orological condition (see Section 7.6). Other applications have even tried to re-
move the physical meaning of some. of the parameters in Equation 7-4. For
example, Melli and Runca (1979) allowed the “wind speed” & to change its value
as a function of the downwind distance, to produce ground-level concentration
values more like those obtained by finite-difference simulations of the same
conditions.

In the past, the more complex time-varying applications of simulation
modeling techniques have made extensive use of dynamic grid models (mainly,
finite-difference simulations following the K-theory approach, as discussed in
Chapter 6). However, a growing concern has arisen about some important limita-
tions of such a numerical approach. Specifically, as discussed in Chapter 6,
(1) the numerical treatment of the advection terms often produces an unreason-
able, artificial diffusion, and (2) K-theory simulation of the growth of a plume
from a point source is often fundamentally wrong in turbulent flows. Other well-
known limitations are that (3) concentrations are computed as spatial averages in
three-dimensional cells (which makes comparison with point measurements diffi-
cult and produces an erroneous initial dilution of plumes whose width is smaller
than the cell dimensions), and (4) relating the diffusion coefficients K to standard
atmospheric measurements is difficult. Also, a numerically correct application of
the K-theory requires the grid size to be much less than the plume size, a condi-
tion that is difficult to satisfy near the source.

To overcome some of these limitations, modelers have attempted to ex-
tend the applicability of the Gaussian method to treat nonstationary, non-
homogeneous conditions. In particular, the segmented plume approach (Chan
and Tombach, 1978; Chan, 1979) and the puff approach (Lamb, 1969; Roberts
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et al., 1970) were defined to handle pseudosteady-state conditions. Both methods
break up the plume into a series of independent elements (segments or puffs)
that evolve in time as a function of temporally and spatially varying meteorologi-
cal conditions. Sections 7.7 through 7.9 will discuss these extensions of the
Gaussian approach.

7.2 THE CALCULATION OF g, AND o,

Concentrations computed by Equation 7-4 depend strongly upon a correct
calculation of o, and o,, which is a major challenge for all Gaussian model
applications. We present, in the two subsections below, two general methods for
computing o, and o,. The first method — the preferred one — is based on the
calculation of nondimensional functions and makes direct use of turbulence in-
tensity measurements, when available. The second method relies on semiempiri-
cal calculations in which the atmosphere is classified into “stability” classes and
different o functions are derived for each class.

7.2.1 The Nondimensional S, and S, Functions for the Gaussian Model

Pasquill (1971) suggested the following relationships for plume sigmas,
which are consistent with Taylor’s statistical theory of diffusion:

oy o, t Sy(t/Ty) (7-5)

0w 1 8,(t/T,) (7-6)

o;

where g, and g, are the standard deviations of the crosswind and vertical wind
vector components (which can be either measured or estimated by the formulae
provided in Chapter 3), and S, and S, are universal functions of the diffusion
(or travel) time ¢ and the Lagrangian time scale T;. One of the major objectives
of current research on Gaussian models is the computation of its nondimensional
functions S, and S;. In this formulation, it is important to point out that g, must
include the contribution of the wind direction meandering component.

Draxler (1976) rewrote the above equations as

oo x S,(t/T;) 7-7

gy

g, 0 x S,(t/T;) (7-8)
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where 0y and o, are the standard deviations of wind vector azimuth and eleva-
tion angles (in radians), x is the downwind distance, and 7; is a normalization
factor, proportional to T, (i.e., T, = T;/1.64, where T; is the time required for S,
or S, to become equal to 0.5; S, and S, are always equal to 1 for ¢t = 0). Note
that oy = arctan (0,/7) and 0y = arctan (o,/i), where, for small angles,
0p =~ 0,/% and 0y = 0,/U.

Draxler (1976) also analyzed available dispersion data, giving a prelimi-
nary evaluation of the specific forms of S, and §; and determining 7;. Pasquill
(1976) tabulated S, as a universal function of x only. These tabulated values
were then reformulated by Irwin (1979) as

S,(x) = (1+0.0308 x0-4548)~1 (7-9)
for x < 10*m, and
S,(x) = 0.333(10,000/x)°° (7-10)

for x > 10*m.

The above formulation of S, is currently accepted as the best way for
determining o0, and has been recommended by the American Meteorological
Society Workshop on Stability Classification Schemes and Sigma Curves (Hanna
et al., 1977). Phillips and Panofsky (1982), however, suggest a different S, for-
mulation, which provides a better fit of experimental data for small x and is
consistent with inertial-subrange theory, namely

T, (Ti/1? t Y]/2
= 0. Bl i [ . — 7-11
S, 0617[t so5 In| 1+5.25 T (7-11)

Much investigation is still required to fully evaluate the validity of the
above S, formulations. In particular, the dependence of §, only upon x is cer-
tainly questionable. Incidentally, Lagrangian particle dispersion numerical ex-
periments (e.g., Zannetti and Al-Madani, 1983a,b) have confirmed a behavior of
o, in agreement with the statistical theory of diffusion and showed a variability of
o, values, from the same o, input, associated with changes in the autocorrelation
structure of the wind direction (that is, a higher time correlation in the wind
direction @ is causing, as expected, larger g,, even though oy is the same).

The evaluation of S, is still quite uncertain. Irwin (1979) provided a pre-
liminary universal function S, and recommended its interim use until more field
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data permit the evaluation of a more accurate scheme. In unstable conditions, his
S function depends upon the depth of the mixing layer &, the diffusion time ¢,
the effective release height ., the surface friction velocity u, and the Monin-
Obukov length scale L. Also, Draxler (1976) derived, under neutral and stable
conditions,

S; = [1+ 0.90/7T,)' /2! (7-12)
for z < 50 m, and
S, = [1 + 0.945(/T,)°-8]1 (7-13)

for z > 50 m, in which the characteristic time 7, is =~ 50 s.

Additional considerations on the calculation of S, and S, for travel dis-
tances less than 10 km in the different layers of the PBL (see Figure 3-8) can be
found in Gryning et al. (1987), who, however, propose non-Gaussian vertical
concentration profiles in most cases.

It must be pointed out that only the availability of validated S, and S,
functions allows a proper application of Gaussian modeling techniques in a way
that makes full use of available meteorological measurements of the standard
deviations of the wind vector components. In fact, the simple use of semi-
empirical plume sigmas (as discussed below) requires only the evaluation of the
stability class (a discrete number) and cannot make use of the exact information
on wind fluctuation intensities, when available.

7.2.2 Semiempirical o Calculations

Several schemes that allow the computation of g, and ¢, from the atmos-
pheric stability class and the downwind distance are available. The stability class
can be computed using the Pasquill or Turner methods (see Tables 3-2 and 3-3)
or from measurements of either 0y or o, or the vertical temperature gradient
AT/Az, as Tables 7-1 and 7-2 illustrate. Nighttime conditions are sometimes
characterized, especially with low wind speed, by large horizontal dispersion due
to wind direction meandering and small vertical dispersion due to the ground-
based temperature inversion. Therefore, when stability is evaluated using the
standard deviation of the horizontal wind direction fluctuations (see Table 7-2),
this stability must be corrected according to Table 7-3 in order to characterize
vertical diffusion at nighttime.

Full three~dimensional tracer experiments have shown that horizontal and
vertical diffusion rates are often related to different stability categorizations and,
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Table 7-1.—Classification of atmospheric stability (data from DeMarrais, 1978;
Best et al., 1986; and Hanna, 1989).

AT
temperature R;

o) change gradient
Stability Pasquill Op with height] Richardson _
classification categories (degrees) (°C 10?m ') number at 2 m Ow/W
Extremely unstable A 25.0 <-1.9 -0.9 > 0.15

: -1.9to -1.7 -0.5 J
Moderately unstable B 20.0 o 0.1 - 0‘15]
Slightly unstable C 15.0 -1.7to -1.5 -0.15 |
Neutral D 10.0 -1.5to -0.5 0 0.05 - 0.1
Slightly stable E 5.0 . -0.5t0 1.5 0.4 |
Moderately stable F 2.5 1.5t0 4.0 [0 : ] 0.0 - 0.05
Extremely unstable G 1.7 > 4.0 s

(*) Standard deviation of horizontal wind direction fluctuation over a period of 15 minutes
to 1 hour. The values shown are averages for each stability classification.

Table 7-2. Classification of atmospheric stability' (from U.S. EPA, 1986, adapted
from Irwin, 1980).

Pasquill Standard deviation of Standard Deviation of

stability the horizontal .wind the vertical wind
categories direction fluctuations 2 direction fluctuations 2
(degrees) (degrees)
A Greater than 22.5° Greater than 11.5°
B 17.5 to 22.5° 10.0° to 11.5°
C 12.5° to 17.5° 7.8° to 10.0°
D 7.5° to 12.5° 5.0° to 7.8°
E 3.8° to 7.5° 2.4° t0 5.0°
F Less than 3:8° Less than 2.4°

! These criteria are appropriate for steady-state conditions, a measurement height of 10 m,
for level terrain, and an aerodynamic surface roughness length of 15 cm. Care should be
taken that the wind sensor is responsive enough for use in measuring wind direction
fluctuation.

2 A surface roughness factor of (zo/15 cm)°-2, where z, is the average surface roughness in
centimeters within a radius of 1-3 km of the source, may be applied to the table values. This
factor, while theoretically sound, has not been subjected to rigorous testing and may not
improve the estimates in all circumstances.



7.2 The Calculation of oyand o, 149

Table 7-3.  Nighttime" (vertical) Pasquill stability category based on op ; i.e.,
the standard deviation of the horizontal wind direction fluctuations,
in degrees (from U.S. EPA, 1986, adapted from Irwin, 1980).
If the 0g And the wind Then the Pasquill
stability speed at 10 m is stability category is
category is (m s™)
A <29 F
29 to 3.6 E
> 3.6 D
B <24 F
2.4 to 3.0 E
> 3.0 D
C <24 E
>2.4 D
D wind speed not considered D
E wind speed not considered E
F wind speed not considered F

*
) Nighttime is considered to be from one hour before sunset to one hour after sunrise.

therefore, a “split-sigma” approach should generally be adopted, in which o,
and g, dynamics are evaluated as functions of “horizontal” and “vertical” stabil-
ity classes, respectively. Results indicate that 0y measurements provide a good
estimate of the “horizontal” stability, while vertical temperature gradient data
seem appropriate for identifying the “vertical” stability class.

After the computation of the stability class, o, and g, can be computed at
a certain downwind distance x by choosing one of the several available

formulae:

1. Pasquill-Gifford sigmas (Gifford, 1961) graphically presented by
Turner (1970) and, in an analytical form, by Green et al. (1980), as

k1 X
o) = [1+ (k)]
az(x) = ke x

[1+ (xlko)]*s

(7-14)

(7-15)

where the constants k,, k3, ks, k4, ks are given in Table 7-4.
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Table 7-4. Values of the constants in the Equations 7-14 and 7-15.

Stability
class

ky ks ks ks ks

M m O Q w >

0.250 927 0.189 0.1020 -1.918
0.202 370 0.162 0.0962 -0.101
0.134 283 0.134 0.0722 0.102
0.0787 707 0.135 0.0475 0.465
0.0566 1,070 0.137 0.0335 0.624
0.0370 1,170 0.134 0.0220 0.700

The above oy, 0, values were derived (Gifford, 1976) primarily
from a diffusion experiment in flat terrain (z, ~ 0.03 m) in which
a nonbuoyant tracer gas was released near the surface and meas-
ured (three-minute averages) downwind up to a distance of 800 m
from the source. Pasquill-Gifford sigmas are the most used formu-
lation for U.S. EPA regulatory modeling applications.

Brookhaven sigmas (Smith, 1968), in which a power law function is
assumed for both g, and o;; i.e.,

o = axt (7-16)

Table 7-5 gives the coefficients @ and b for each “gustiness” cate-
gory. Table 7-6 illustrates the relation between the “gustiness”
categories and the Pasquill classes. The Brookhaven scheme was
derived from elevated releases (108 m) over a rough surface (z, ~
1 m), with concentrations measured up to a few kilometers down-
wind.

Briggs sigmas (Briggs, 1973), in urban and rural versions, provide
an interpolation scheme that agrees with Pasquill-Gifford in the
downwind range from 100 m to 10 km, except that g, values for A
and B stability approximate the B, and B; Brookhaven curves.
Table 7-7 gives the Briggs sigmas. The urban Briggs sigmas are
also called McElroy-Pooler sigmas, and were derived from several
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Table 7-5. Coefficients a and b for Equation 7-16.
Gustiness 9y 9z
category a b a b
B, 0.40 0.91 0.41 0.91
B, 0.36 0.86 0.33 0.86
C 0.32 0.78 0.22 0.78
D 0.31 0.71 0.06 0.71
Table 7-6. Relation between the “gustiness” category and the Pasquill class

(from Gifford, 1976).

Pasquill Gustiness
class category
A B, (very unstable)
B B; (unstable)
C B; (unstable
D C (neutral)
E C/D (neutral/stable)
F D (stable)

urban dispersion experiments with low-level tracers (McElroy and
Pooler, 1968). The U.S. EPA recommends these sigma values as
the ones most appropriate for dispersion simulations in urban areas

(U.S. EPA, 1984).
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Table 7-7. The Briggs (1973) sigma functions for (a) urban and (b) rural con-
ditions (from Panofsky and Dutton, 1984). [Reprinted with permis-
sion from Wiley—Interscience.]

(a) Urban Dispersion Parameters (for distances between 100 and 10,000 m)

Pasquill o, (m
stability % (m) (m)
A-B 0.32 x (1 + 0.0004 x)°5 0.24 x (1 + 0.001 x)°5
C 0.22 x (1 + 0.0004 x) 7% 0.20 x
D 0.16 x (1 + 0.0004 x)~°° 0.14 x (1 + 0.0003 x)™°3
E-F 0.11 x (1 + 0.0004 x)™°° 0.08 x (1 + 0.00015 x)°°

(b) Rural Dispersion Parameters (for distances between 100 and 10,000 m)

plack i oy (m) o (m)
A 0.22 x (1 + 0.0001 x) %5 0.20 x
B 0.16 x (1 + 0.0001 x)™° 0.12 x
C 0.11 x (1 + 0.0001 x)~°% 0.08 x (1 + 0.0002 x)™°°
D 0.08 x (1 + 0.0001 x) ™5 0.06 x (1 + 0.0015 x)-05
E 0.06 x (1 + 0.0001 x)~°° 0.03 x (1 + 0.0003 x)™*
F 0.04 x (1 + 0.0001 x)7°5 0.016 x (1 + 0.0003 x)™

Several additional formulations and parameterizations of ¢, and g, are
available in the literature. See, for example, Briggs (1985) for a review of diffu-
sion parameterizations for the convective (i.e., unstable) PBL.

7.3 REFLECTION TERMS

The basic Gaussian formula is often used with the assumption of total or
partial concentration reflection at the surface (see Figure 7-3). Therefore, the
last term in Equation 7-4 becomes
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S@) = exp [—-;- (E—;—z-)z] + g exp [—% (f-;*—z—)z] (7-17)
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Figure 7-3.  Example of ground reflection simulated by the image method; i.e., a
vertical source below the ground (from Williamson, 1973). [Reprinted
with permission from Addison-Wesley.]

where r, is the ground reflection coefficient (r, = 1, i.e., total reflection, is
generally assumed). For receptors at the ground (z, = 0) with r; = 1, Equa-

tion 7-17 becomes
1(h.\?
S(0) = 2 -=1= 7-18
© = 2w [-3(%f] (-1

which, for ground-level nonbuoyant sources (i.e., h. = 0), gives

50) = 2 (7-19)
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If the plume is emitted within the PBL, it can also be reflected from the
top z; of the PBL, giving

1(h,-2z Y 1(h.+2z \
S(z,) = exp 3\ +Tg €XP ) —;z—
1(2z;-h.-2Y)?
+7I; eXp —E —-0——
z

where r; is the reflection coefficient at z; (r; = 1, i.e., total reflection, is gener-
ally assumed). However, the presence of a second reflecting barrier causes multi-
ple reflections and, therefore, instead of Equation 7-20, it is better to use, for

rg =ri =1,
‘ i —h\2
S(z,) = S {exp[—%(———Z'Jrzjz' h,)]
Jj=0,%1,%2,... o

22 2
+exp[--;—(z'+ ‘jjz,+he) ]}
Z

Unfortunately, in some cases, Equation 7-21 converges slowly. To avoid
excessive computations, Yamartino (1977) proposed an efficient method for ap-
proximating Equation 7-21, in which:

(7-20)

(7-21)

- for 0,/z; < 0.63, Equation 7-21 is truncated at j = 0, + 1

- for 0.63 < 0,/z; < 1.08, Equation 7-21 is approximated by

S(z,) = —2@—(}1(1 - [1+p*+2 B cos(x z,/z) cos(m h./z)] (7-22)

where

B = exp [%(“Z")z] (7-23)
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and, for g,/z; > 1.08, Equation 7-22 is used with 8 = 0, giving
V2 o,
S(Z') = ——— (7—24)
i

which, substituted into Equation 7-4, gives the “trapping” equation

_ 9 [_1(&)2] 725
“T Tmeun P2, (7-23)

Equation 7-25 shows a uniform vertical mixing (between z = 0 and
z = z;) of the plume, whose concentrations no longer depend
upon z.

The above scheme approximates Equation 7-21 with an error < 1.3 percent and
is, therefore, quite satisfactory in all applications.

7.4 DEPOSITION/DECAY TERMS
Dry deposition, wet deposition and chemical transformation phenomena
are usually taken into account in the Gaussian model by multiplying Equa-
tion 7-4 by exponential terms such as
exp [-#/T] (7-26)
where ¢ is the travel time

t=x/u (7-27)

and T is the corresponding time scale. The relation between the percentage of
mass reduction per hour (%/h) and the time scale T in Equation 7-26 is

%/h = 100 [1-exp(-3,600/T)] (7-28a)
and, for large T,
%/h = 360,000/T (7-28b)

More discussion of atmospheric deposition phenomena is presented in
Chapter 10.
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7.4.1 Dry Deposition

The time scale of dry deposition, T;, can be expressed as a function of the
deposition velocity V; (see Equation 6-10), as follows

Ti = VA, (7-29)
d

where A, is the vertical thickness of the plume, say
A, = 4o, (7-30)

Since dry deposition phenomena occur only after the plume interacts with
terrain features, it is often convenient to apply Equation 7-26 only beyond a
critical downwind distance x4, defined as the distance at which 2 o, is equal to
the height of the plume above the ground; i.e.,

zaz(xd) = h, (7-31)

which can be rewritten as

Xa = 03'(he/2) (7-32)
where 0;)(...) is the inverse function of g, (x).
7.4.2 Wet Deposition

The time scale of the wet deposition, T;,, can be expressed (Draxler and
Heffter, 1981) as

3.6-10° P,

T = =55,

(7-33)

where P, is the thickness of the precipitation layer (an average climatological
value of P, is 4,000 m), S, is the scavenging ratio of the pollutant (a typical
value for SO; is §,=4.2 - 10°), and Py is the precipitation rate in mm/h.

7.4.3 Chemical Transformation

The time scale of the chemical transformation, T, is mainly a function of
the reactivity of the pollutant. A typical value for SO; is T, = 100,800 s (i.e.,
28 hours).
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7.5 SPECIAL CASES

Several modifications of the Gaussian equation that have been proposed
for simulating special dispersion conditions are discussed in this section.

7.5.1 Line, Area, and Volume Sources

Equation 7-1 or 7-4 can be spatially integrated to simulate the effects of
line, area, and volume sources. Analytical integration is often impossible or re-
quires simplifications (especially in the forms of the g, and o, functions). There-
fore, numerical integration is often used for these spatial integrations. Many
Gaussian models (see Chapter 14) contain accurate routines for the treatment of
line, area, and volume sources.

In several cases, the virtual point source method provides a simple, but
satisfactory, treatment of line, area and volume sources, without integration. Us-
ing this method, the actual nonpoint source is simulated by an appropriate up-
wind virtual point source S’, as Figure 7-4 illustrates.

-
-
°
S~
S‘
Virtual
Point
Source Vsolur::

Figure 7-4.  The virtual source approach for simulating line, area, and volume
sources.
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7.5.2 Fumigation

Turner (1970) proposed the following formula to simulate the maximum
morning fumigation effects of an elevated plume previously emitted into the
stable layer:

c(x,0,2) = —-2‘/-——7;%7{} (7-34)

where
H, = h, + 2 0 (7-35)
oy = Oy + (he/8) (7-36)

Equation 7-34 is derived by assuming that the stable plume, characterized
by 0ys and o, is suddenly fumigated to the ground. During this fumigation, the
plume becomes homogeneously mixed in the vertical, between z = 0 and z = A, +
2 0;, and expands horizontally following a 15° fumigation trajectory (from H, to
the ground), which causes an increase of g, from oy to oyr.

7.5.3 Concentration in the Wake of Building

Several algorithms have been proposed for computing plume downwash
effects, which Figure 7-5 outlines. In particular, downwash algorithms have been
incorporated into two Gaussian computer codes (see Chapter 14): the Industrial
Source Complex Model (ISC; Bowers et al., 1979) and the Buoyant Line and
Point (BLP) Source Dispersion Model (Schulman and Scire, 1980). The ISC
model was further modified (Schulman and Hanna, 1986) to account for im-
proved understanding of plume rise and downwash around buildings.

A simple estimate of the extra diffusion induced by the buildings can be
obtained by increasing the plume sigmas in the following way

(0% + const Alm)!/? (7-37)

Oyw

(62 + const Alm)/? (7-38)

Ozw

where g, and o, are the plume sigmas without the building effects; o, and o,
incorporate the building effects; and A is the area of the building projected onto a
vertical plane normal to wind direction.



7.5 Special Cases 159

More discussion of this topic is found in Section 11.3.
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Figure 7-5. Mean flow around a cubical building. The presence of a bluff
structure in otherwise open terrain will produce aberrations in the
wind flow generally similar to those shown (from Smith, 1968).
[Reprinted with permission from the American Society of Mechanical
Engineers.]

7.5.4 Plume Trapping Into a Valley

Turner (1970) proposed to treat the plume trapping in a valley in a man-
ner similar to the plume trapping between the ground and z; ; i.e., similar to the
trapping Equation 7-25, but in the horizontal instead of the vertical. With this
assumption, in the case of simple uniform flow parallel to the valley axis
along x, we obtain for any y,

/
c(x,y,0) = (%)1 : Wgz‘u‘ exp [—-;—(%)2] (7-39)

where W is the valley width. Harvey and Hamawi (1986) presented an expanded
analytical treatment of plume trapping in a valley.

7.5.5 Tilted Plume

Plumes of large particles having a freefall, i.e., gravitational (settling)
velocity Vg can be simulated by the Gaussian tilted plume approach Figure 7-6
illustrates. The plume is tilted downward at an angle whose tangent is Vs /1, the
reflection coefficient at the ground is zero, and most of the plume material is
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Figure 7-6.  Schematic representation of tilted plume treatment of deposition of
particles with settling velocity V. Solid lines represent the tilted
plume, while dotted lines describe the plume shape with Vg = 0.

deposited at the ground at a distance of about Zh./V;. Section 11.4 provides
additional discussion.

7.5.6 Coastal Diffusion and Shoreline Fumigation

Shoreline fumigation is a particularly important problem. As Figure 7-7
illustrates, elevated plumes emitted offshore or near the shoreline initially en-
counter stable marine dispersion conditions. But when carried inland by the day-
time breeze, they eventually penetrate the growing unstable mixing layer inland
and are, therefore, fumigated to the ground.

Lyons and Cole (1973) and van Dop et al. (1979) provided the following
approximate solution to the fumigation problem. If z;(x) is the mixing height,
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stable
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Figure 7-7.  Example of plume producing uniform vertical concentration after
encountering unstable layer.

expressed as a function of the distance x from the shoreline, the concentration in
the fumigation region is

zj(x)

z;i(x)

- o

¢ dz (7-40)

cr(x) =

where ¢ is the concentration field generated by the standard Gaussian plume
equation with stable sigmas (i.e., 0y, 0;). After some simplifying assumptions,
we obtain, for small g, and y = 0,

0
/ﬁ Oyr U zi(x)

cr(x) = (7-41)

where o, has been previously defined by Equation 7-36.

A Gaussian code, developed for the U.S. Department of the Interior,
simulates the overwater transport and diffusion of pollutants emitted by offshore
sources, such as oil platforms. This model (offshore and coastal dispersion,
OCD; Hanna et al., 1984) is becoming the official U.S. EPA regulatory tool for
these applications.

Section 11.2 presents additional discussion of coastal diffusion
phenomena.

7.5.7 Complex Terrain

A few Gaussian computer codes are available for complex terrain simula-
tions. The most recent ones are the rough terrain dispersion model (RTDM; ERT,
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1984) and the complex terrain dispersion model (CTDM; Strimaitis et al., 1986),
both developed for the U.S. EPA. They incorporate the results of intensive tracer
experiment studies in complex terrain.

One of the most important issues in complex terrain modeling by
Gaussian formulae is the estimate of the plume centerline height when approach-
ing the terrain height. Three simple assumptions are illustrated in Figure 7-8.
Recent, more refined, techniques are presented in Section 11.1.

7.6 THE CLIMATOLOGICAL MODEL

The Gaussian plume equation is often used to simulate the time-varying
concentration field by assuming a series of steady-state conditions. In other
words, if the hourly emission and meteorological input is known, a steady-state
equation (such as Equation 7-4) can be used repeatedly with the assumption that
each hour can be represented by a stationary concentration field.

Several air quality applications require the computation of long-term
(e.g., annual) concentration averages, thus requiring a large number of hourly

EPA (STABLE CONDITIONS), CRAMER (ALL CONDITIONS), NOAA
{STABLE CONDITIONS) WHERE CLOSEST APPROACH TO RECEPTOR
210 m

o wn «= == EPA AND NOAA (NEUTRAL AND UNSTABLE CONDITIONS)
@m: am.mme ERT (ALL CONDITIONS)

7\
I, \\
,,’—-ﬁ\\\ /, /.‘\. \.__,
~ . S . R
//’-/" -—.\0\\\—/ ° —
/’. .\o—'

PLUME CENTERLINE
HEIGHT

Figure 7-8.  Simple assumptions for simulating plume centerline trajectory in
complex terrain (from Fabrick et al., 1977). More advanced as-
sumptions are discussed in Section 11.1.
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computations (e.g., 8,760 hourly computations for each source-receptor contri-
bution are required to estimate the annual average). Since meteorological and
emission conditions are often the same at several different times, many of these
hourly computations will provide the same concentration field output. The climat-
ological model takes advantage of this repetition to compute long-term concen-
tration averages without performing an expensive hour-by-hour simulation.

The procedure used is the following. Let us assume that a source can
operate in N; different emission conditions and that the meteorology can be
described by N; meteorological classes. Then the general climatological model
equation becomes

Ni Nj Ny Nj
c= S S f0 wij/(z zf,-,-) (7-42)
i=1 j=1 i=1

j=1

where € is the average concentration in the receptor r due to the source in s
during the period under examination; f; is the joint frequency of occurrence,
during the same period, of the i-th emission condition and the j-th meteorologi-
cal condition; Q; is the pollutant emission rate during the i-th emission condi-
tion; and Q; y;; is the steady-state equation (e.g., the Gaussian plume equation),
which gives the concentration in r due to the emission in s with the i~th emission
and the j-th meteorological scenarios (y;; is referred to as the “kernel” of the
concentration computation formula). If N; X N; is much smaller than the number
of hours of the long-term period under investigation, Equation 7-42 is computat-
ionally faster than the hour-by-hour simulation and, for most practical cases,
almost as accurate. Note that the term y;; can be precomputed for all i and j,
thus allowing easy recalculations with different emissions Q; and/or different
meteorology fi; .

The climatological model is generally applied with the following further
assumptions:

1. The Gaussian plume equation (Equation 7-4) is used for comput-
ing the kernel y;;.

2. Q is constant (or depends only upon the meteorological condi-
tion j).
3. The meteorological condition j is given by the combination of a

wind direction class j;, a wind speed class j,, and a stability class
j3 [i‘e" f;j becomes f(jl’ jZa j3)]
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4. Because of the high frequency of occurrence of wind blowing in
each wind direction sector, a uniform crosswind horizontal concen-
tration distribution is assumed within each downwind sector.

5. Receptors are at ground level.

With the above assumptions, Equation 7-42 becomes

C= > fUrizis) QU iz Js) '/’(il,jz,ja)/( > f(jlajZ’j3)) (7-43)
J

J1J2 J3 1J2 )3

where ¥ (j;,Jj2,j3) is the uniform crosswind horizontal Gaussian kernel,

Y. j2,J3) = (%)1/2 Nua/ @ 7 89) exp[——%—(z_‘iéﬁ)z] (7-44)

o u o,

Here N, is the number of wind direction sectors (i.e., j; =1, 2, ..., N,4; gener-
ally N,z = 16); A,(s,r,j1) is the horizontal downwind distance between the
source and the receptor; o, (A, j3) is the vertical plume sigma; Ah(j,,js3) is the
plume rise; %(j;) is the wind speed; and z; is the source height. Equation 7-44
can be precomputed for each j;, j;, and j3, thus providing a fast computational
algorithm for €. Clearly, Equation 7-44 must be applied only when the recep-
tor r is downwind of the source s for the wind direction class j, (where down-
wind, in this case, means within a sector of 2x/N,, angle in the horizontal);
otherwise, ¥ is equal to zero.

If the plume is uniformly mixed in the mixing layer, Equation 7-44 is
further simplified as

Nwd/(2 T Ad)

7-45
- (7-45)

Y(l1,J2.J3) =

where z; is the mixing height.

Several authors (e.g., Martin, 1971; Calder, 1971; Runca et al., 1976)
have used the climatological Gaussian model successfully. These long-term
simulations generally provide better results than the short-term ones, due to
error cancellation effects.

”
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7.7 THE SEGMENTED PLUME MODEL

The Gaussian steady-state formula described in Equation 7-1 or 7-4 is
valid only during transport conditions (e.g., # > 1 m/s) in fairly stationary and
homogeneous situations. In order to treat time-varying transport conditions and,
especially, changes in wind direction, several authors (e.g., Hales et al., 1977,
Benkley and Bass, 1979; Chan et al., 1979) have developed and used segmented
Gaussian plume-models. In the segmented plume approach, the plume is broken
up into independent elements (plume segments or sections) whose initial features
and time dynamics are a function of time-varying emission conditions and the
local time-varying meteorological conditions encountered by the plume elements
along their motion.

The segmented plume features are illustrated in Figure 7-9, which shows
a plan view (solid lines) of a segmented plume encountering a progressive
change of wind direction along its trajectory. Segments are sections of a
Gaussian plume. Each segment, however, generates a concentration field that is

Figure 7-9.  Computation of the concentration at the receptor R generated by the
segmented plume (solid lines). The computation is performed by
evaluating the contribution of the virtual plume (dotted lines) from
the virtual source S’ passing through the closest segment (number 3)
to the receptor R (from Zannetti, 1986). [Reprinted with permission
from Pergamon Press.]
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still basically computed by Equation 7-1 and that represents the contribution of
the entire virtual plume passing through that segment, as Figure 7-9 illustrates.
Therefore, only one segment (the closest) affects the concentration computation
at each receptor, except that the occurrence of a 180° wind direction change can
create a condition where the contribution of two segments (that is, two virtual
plumes) should be superimposed at some receptors.

7.8 PUFF MODELS

Puff models (e.g., Lamb, 1969; Roberts et al., 1970) have, like segmented
models, been developed to treat nonstationary emissions in nonhomogeneous dis-
persion conditions. Puff methods, hoWever, have the additional advantage of be-
ing able, at least theoretically, to simulate calm or low wind conditions.

The Gaussian puff model assumes that each pollutant emission of dura-
tion At injects into the atmosphere a mass AM = QAt, where Q is the time-
varying emission rate. The center of the puff containing the mass AM is advected
according to the local time-varying wind vector. If, at time t, the center of a puff
is located at p(t) = (x,,y,,2,), then the concentration due to that puff at the
receptor r = (x,,y,,z,) can be computed using the basic Gaussian puff formula

- AM Lfxp-x ) R AN
T @@ o, exP[ 2( O )]exP[ 2( On )]

(7-46)

which is often expanded to incorporate reflection and deposition/decay terms.
Note that the analytical integration of Equation 7-46 in stationary, homogeneous
transport conditions gives the Gaussian plume formula of Equation 7-4.

Equation 7-46 requires the proper evaluation of the horizontal (g;,) and
vertical (0;) dynamics of each puff’s growth. The total concentration in a recep-
tor at time t is computed by adding the contribution Ac from all existing puffs
generated by all sources. Note that the “puff” Equation 7-46 differs from the
“plume” Equation 7-4 mainly because an extra horizontal diffusion term has
been substituted for the transport term, with the consequent disappearance of the
wind speed &. In other words, in a puff model, the wind speed affects the con-
centration computation only by controlling the density of puffs in the region (that
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is, the lower the wind speed, the closer a puff is to the next one generated by the
same source). Therefore, at least in theory, a puff model can handle calm or
low-wind conditions, and this approach represents the most advanced and pow-
erful application of the Gaussian formula.

Several studies have discussed the puff modeling approach in detail, im-
proving its application features. In particular, algorithms were proposed and
evaluated for incorporating wind shear effects (Sheih, 1978); virtual distance
(Ludwig et al., 1977) and virtual age (Zannetti, 1981) computations were defined
for correctly evaluating the ¢, and o, dynamics of the puff; puff merging (Lud-
wig et al., 1977) or puff splitting (Zannetti, 1981) were incorporated for perform-
ing cost-effective simulations with relatively large At (for example, 5 to 10 min-
utes); and an empirical method was derived (Zannetti, 1981) for evaluating the
puff’s o, and growth during calm or low-wind conditions as a function of cur-
rently available o functions during transport conditions.

The determination of the puff modeling sigmas can be confusing, as dis-
cussed by Hanna et al. (1982). There are, in fact, two types of application for
puff modeling. The one discussed above uses puffs to simulate the average char-
acteristics (e.g., one-hour average concentrations) of a continuously emitted
plume. In this case, it is correct to use the plume sigmas discussed in Section 7.2
to describe the growth of each puff in the plume. But puff (or better, relative
diffusion) simulations apply also to the instantaneous or semi-instantaneous
sources, defined as those sources where the release time or the sampling time is
short compared with the travel time.

Unfortunately, little information is available for the description of the dif-
fusion of a single puff, i.e., for the evaluation of the relative diffusion sigmas,
even though it is clear that the plume sigma equations described in Section 7.2
cannot be applied (even though they often are) to relative diffusion calculations.

For relative diffusion, Hanna et al. (1982) recommend the Batchelor’s
formula

0% = Et3 (7—47)
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for puff travel times that are less than 10* s, where € is the eddy dissipation
rate. They also recommend calculating € locally at first, and then at a height
z = z;/2 as o, approaches 0.3 z;. The eddy dissipation rate € is given by

(¢--2) (7-48)

in the surface layer (¢» was discussed in Section 3.6), while, at heights above the
surface layer at midday,

¢ ul
kz

€ = 05H (7-49)

The term H’ is the surface buoyancy flux

Hg

T =
w coT

H =

(7-50)

~ oo

where H is the surface heat flux defined by Equation 3-21. In neutral conditions,
however, H' = 0 and, consequently, € = 0. In this case, a better fit of the avail-
able data gives, above the surface layer

€ = u/(0.52) (7-51)
For travel times greater than 10* s, Hanna et al. (1982) suggest
oy = constt (7-52)

where const can be determined by forcing Equation 7-52 to satisfy Equation 7-47
for t = 10* s, thus giving

const = 100/e (7-53)

A similar procedure is proposed for g,, except that g, is recommended to
remain equal to 0.3 z; for all times after it first reaches this value.

7.9 MIXED SEGMENT-PUFF METHODOLOGY

Zannetti (1986) has recently proposed a new mixed methodology that
combines the advantages of both the segment and puff approaches for realistic
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and cost-effective simulation of short-term plume dispersion phenomena using
the Gaussian formula.

Pollutant dynamics are described by the temporal evolution of plume ele-
ments, treated as segments or puffs according to their size. While the segments
provide a numerically fast simulation during transport conditions, the puffs allow
a proper simulation of calm or low-wind situations.

The methodology is incorporated into a computer package (AVACTA 11,
Release 3) that gives the user large flexibility in defining the computational do-
main, the three-dimensional meteorological and emission input, the receptor lo-
cations, and in selecting plume rise and sigma fomulae. AVACTA II provides
both pollutant concentration fields and dry/wet deposition patterns. The model
uses linear chemistry and is applicable to any two-species reaction chain (e.g.,
S0, and S0%°), where this approximation is reasonable and an appropriate reac-
tion rate is available.

According to this dynamic segment-puff approach, each plume is de-
scribed by a series of elements (segments or puffs) whose characteristics are
updated at each dispersion time interval At (for example, 5 to 10 minutes).
Meteorological three-dimensional fields (wind and turbulence status) and emis-
sion parameters are allowed to change at each “meteorological” time step At,,
(typically, 30 to 60 minutes). The dynamics of each element consist of (1) gen-
eration at the source; (2) plume rise; (3) transport by advective wind; (4) diffu-
sion by atmospheric turbulence; (5) ground deposition, dry and wet; and
(6) chemical transformation, creating secondary pollutant from a fraction of the
primary pollutant. The type of element (segment or puff) does not affect its
dynamics, but only the computation of the concentration field, which is discussed

in Section 7.9.6.

Each element is characterized by the following time-varying parameters
(see the example in Figure 7-10) evaluated at its final central point B:

e = (X Ye, Ze) coordinates of the point B

he elevation of B above the ground (in flat terrain
h. = z,
My, M, masses of primary and secondary pollutant
Op, 031, Oz2 standard deviations of the Gaussian concentration dis-

tribution; horizontal, vertical below B, and vertical
above B, respectively
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Figure 7-10. Chain of elements from the source S at time t. The time-varying
parameters of a selected element in the chain are illustrated (from
Zannetti, 1986). [Reprinted with permission from Pergamon Press.]

The characteristics of each element’s initial central point A at time ¢ are
equal to those, at the same time ¢, of the final central point of the element
successively emitted from the same source.

7.9.1 Generation of Plume Elements

At each time interval At, a new element is added to the element “chain”
from each source. The parameters defining each new element have the following
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initial values: the central final point is set at the source’s exit point plus the
vertical plume rise Ah; My = Oy At, M= Q,At, where Q, and Q, are the
current emission rates of primary and secondary pollutants (generally Q, = 0);
and 0y, 0;1, and o;; represent the initial sigmas of the plume (for example, 0.369
multiplied by the source exit diameter may be chosen for g, and Ah/3.16 for o,
and 0,,).

7.9.2 Transport

At each time interval At, the central final point of each existing element is
advected according to the current wind vector T = (u,, u,, u,) averaged over the
volume covered by the element size (i.e., + 20), as follows

e(rew) = el0ld) | F Az (7-54)
However, if the horizontal transport term
up = (U + ud)'? (7-55)

is less than a critical value up;, (for example, umy, = 1 m s™!), u, and u, are
forced to zero, since it is assumed that such small terms represent more local
intermittent effects than actual transport. In this case, however, a large horizontal
diffusion may be produced by the large wind direction fluctuations typically en-
countered during these low wind speed situations.

7.9.3 Diffusion

During each At, the element’s sigmas are increased based on the virtual
distance/age concept (Ludwig et al., 1977; Zannetti, 1981), which operates for
either gy, 0,1, or 0,3, according to the following scheme.

1. Select the current sigma function o0 = o (d) for the element (d is
the downwind distance) according to the current local meteorology
at the element’s location; that is, the average atmospheric turbulent
status in the volume covered by the element size (atmospheric tur-
bulence status is often represented simply by a “stability class,” a
discrete number).
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2. Evaluate the virtual distance d, such as

o = o(d,) (7-56)

where 09 is the current sigma value for the element. The compu-
tation in Equation 7-56 is straightforward for some sigma formu-
lae (for example, power laws), but requires iterative procedures for

others.
3. If Up < Upin force Up = Unin-
4. Increment sigma by

o) = a(d, + up At) (7-57)

The above dynamics of the element’s sigmas depend upon the choice of
the sigma function and the current atmospheric turbulence status at the element’s
location. A separate turbulence status can be considered for the computation of
horizontal (g;,) and vertical (0;;, 0;2) increments, if a proper meteorological input
is available. For example, the vertical temperature gradient might provide an
evaluation of the “vertical” turbulence status, while the horizontal wind direction
fluctuation intensity provides a good estimate of the “horizontal” turbulence
status. (Without the measurement of the horizontal wind direction fluctuation,
the estimate of “horizontal” turbulence status may be quite wrong.) Different
values of the vertical turbulence status above and below the element center gen-
erate different dynamics for g,; and o;,.

7.9.4 Dry and Wet Deposition

Both dry and wet deposition for the primary and secondary pollutants are
simulated by first-order reaction schemes and are computed during each At by
an exponential reduction of the pollutant mass

ME = MO exp [-P;; At/360,000] (7-58)

where i indicates the primary (i = 1) or the secondary (i = 2) pollutant, j indicates
dry (j = 1) or wet (j = 2) deposition, and P, ; is the corresponding percentage of
reduction per hour (% h™!). All mass differences MY - M are deposited
and accumulated on the ground.
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If the two P, ; for dry deposition are not directly specified as input values,
they can be obtained from the deposition velocity values as

P.1 = 360,000 Vi/Az (7-59)

where V; are the current deposition velocities at the element’s location, and
Az, = (20;1 + 205) is the vertical thickness of the element. Equation 7-59 ap-
plies only when the plume has reached the ground (that is, 20,; > k), otherwise
Py =0

If the two 7, ; for wet deposition are not directly specified as input values,

they can be obtained (Draxler and Heffter, 1981) from precipitation data as

P2 = S P/(0T;) (7-60)

where §; are the pollutant scavenging ratios, P, is the current average precipita-
tion rate at the element’s location (mm h™'), and T, is the thickness (m) of the
precipitation layer.

7.9.5 Chemical Transformation

During each At, a first-order chemical reaction scheme is adopted, in
which the chemical transformation term reduces the mass M; of primary pollut-
ant and increases the mass M, of secondary pollutant in each element according
to

M = M exp (- k At360, 000) (7-61)

ME™ = M) 4 (wy/w)) MO [1 - exp (-k At/360,000)] (7-62)

where k is the current chemical transformation factor at the element location
expressed as a percentage of reduction per hour (% h™'), and w; are the pollut-
ant molecular weights (i = 1, 2). '

7.9.6 Concentration Computation

The plume element dynamics can be computed independently from the
type of element (segment or puff). The element type, however, is a key factor in
computing the plume concentration field during each At. The criterion for
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identifying the type of element is the ratio between its length L, (the horizontal
distance between A and B in Figure 7-10) and o,. For a segment

Le/oy >2 (7-63)

and, for a puff,
L/oy <2 (7-64)

where the center of the puff is located in the middle between A and B. Since g,
continues to grow with time, all segments will eventually become puffs.

The above algorithm assures that, when segments are transformed into
puffs, the distance between two consecutive puffs will not be greater than 2g,,
which is the condition required (Ludwig et al., 1977) for a series of puffs to
provide an almost perfect representation of a continuous plume. In calm or low
wind speed conditions, L, = 0 and the elements are generated as puffs directly
from the source.

The above scheme allows a realistic and computationally efficient repre-
sentation of calm, transport and transitional cases. For example, puffs can accu-
mulate for a few hours in the region near the source during calm conditions, and
subsequently be advected downwind when the stagnation breaks up. The concen-
tration at each receptor point due to a certain source must account for the contri-
bution of all elements generated from that source; specifically, the sum of the
contributions of all existing puffs plus the contribution of the closest segment.
This allows a proper dynamic representation of both calm and transport condi-
tions, including the previously mentioned situation in which, due to a 180°
change in wind direction, two sections of the same plume may affect the same
receptor. In this latter case, in fact, we can generally assume that the elements of
the oldest section of the plume may have already become puffs, thus allowing
both sections of the plume to contribute to the concentration computation at that
receptor.

7.9.6.1  Puff Contribution

The concentration contribution of a single puff at a receptor during each
At is computed by Equation 7-46, which allows the computation of the primary
pollutant concentration ¢; (or the secondary one c;) from the current values of
the puff’s variables M, (or M,), o;, and o0,; (or oy, if the receptor is above the
center of the puff). These variables are evaluated by interpolation at the center of
the puff, that is, the point between its initial and final central points.
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7.9.6.2  Segment Contribution

Because of the condition defined in Equation 7-63, each segment has
sufficient length L, to assure that the horizontal “stream-wise” diffusion (that is,
diffusion along the length of the segment) can be neglected in comparison with
the transport term. This is one of the basic assumptions for Equation 7-4, which
is used as the numerical algorithm for computing the concentration field due to a
plume segment. This computation requires the identification of the segment
closest to the receptor and the use of the segment’s variables for computing, with
Equation 7-4, the concentration field generated by an equivalent plume passing
through the segment, as illustrated in Figure 7-9. The parameters in Equation
7-4 are evaluated in the following way:

1. The segment’s variables (M;, M, 04, 01, 05;) are interpolated at
the point R’ (see Figure 7-9), the closest point to R along the seg-
ment centerline.

2. Q is evaluated as a “virtual” current emission rate; i.e.,
M, M,
= |—)or|— 7-
C (At) (At) - (7-65)
3. I is evaluated as a “virtual” current wind speed; i.e.,
L,
b= — 7-66
Ar (7-66)

(However, u is forced to be > umi, to avoid unrealistic “conver-
gence” effects.)

4. g, is used instead of o,;, if the receptor R is above the point R’'.

Naturally, only the closest segment is used, since its contribution is a
surrogate for that of the entire segmented portion of the plume.

7.9.6.3  The Treatment of the Segment-Puff Transition

The concentration computation described in the previous section allows
the incorporation of all the advantages of both the puff and the segmented ap-
proach. Numerical problems, however, arise when the receptor is close to the
point in the plume at which segments grow into puffs (see Zannetti, 1986, for a
discussion of how these problems have been eliminated).
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7.9.6.4  Splitting of Elements

The breaking of a plume into elements allows the evaluation of their dy-
namics as a function of the local time-varying meteorological conditions. In par-
ticular, during each At, the final central point of each element moves from an
old to a new position. The horizontal component of this advective displacement is

Ad, = u; At (7-67)
where u, = (u,,u,) is the current local horizontal wind vector.

Large values of |Ad,|, due to an increase in wind speed or associated to a
change in wind direction, may affect the elements’ ability to represent the con-
tinuous plume by reducing resolution. The splitting technique, which was origi-
nally proposed for puff modeling simulations (Zannetti, 1981), is here incorpo-
rated for both puffs and segments and is illustrated in Figure 7-11. This splitting
generates, when required, enough fictitious elements along the element’s trajec-
tory during At to maintain sufficient resolution. The splitting of an element’s
trajectory is performed to compute its concentration contribution at receptor R
when (1) the receptor R is affected by that element, and (2) for puffs, when
|Ad,| > 0, and, for segments, when |Ad,| > 0,, where Ad, is the component of
Ad, which is perpendicular to the segment’s centerline.

In this splitting computation, the masses M; and M, of the element are
equally distributed among the split elements along the trajectory from the old
position to the new one.

7.10 DERIVATIONS OF THE GAUSSIAN EQUATIONS

The Gaussian equations can be derived from both Eulerian and Lagrangi-
an considerations and that is the reason Gaussian models are discussed here
separately from Eulerian models (Chapter 6) and Lagrangian models
(Chapter 8).

There are several ways to derive the steady-state Gaussian plume Equa-
tion 7-4. Four methods will be discussed briefly in this section.
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Figure 7-11.

Splitting process for a puff (above) and a segment (below). A and B
represent the initial and final central points of the element (from
Zannetti, 1986). [Reprinted with permission from Pergamon Press.]
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7.10.1 Semiempirical Derivation

The straightforward semiempirical derivation is performed by assuming
that the plume concentration c, at each downwind distance x, has independent
Gaussian distributions both in the horizontal and in the vertical. Therefore,

c(x,y,2) = const ! exp [—-1—(A°‘”)2]
Y ‘?2 oy, 2\ on
e ]
2mo, 2 0z

where the symbols are the same as in Section 7.1 but x is used as the downwind
distance instead of d.

(7-68)

The mass conservation condition requires all concentration fluxes through
each plume cross—sectional plane (y,z) to be the same; i.e., for each x

0 = (yJ-) c(x,y,z) Tdydz (7-69)

which, with Equation 7-68, gives const = Q/f, and therefore Equation (7-4).
7.10.2 Gaussian Plume as Superimposition of Gaussian Puffs

A plume can be represented by an infinite series of infinitesimal puffs,
where each puff, located in x,y,z, generates the concentration field

am
2 m)*? 0, 0, 0,

-x\2 —-v.\2 -2\
oo ({55 (5 (5]
2 Oy oy o;
at the receptor (x,, y,,z,), and dM = Q dt = Q dx/u is the mass of the puff. Then,
the integration along x of Equation 7-70 gives Equation 7-4, if o, = 0, = 0-

de(x,y,2) =

(7-70)

7.10.3 Analytical Solution of the Steady-State Atmospheric Diffusion
Equation 6-8

Several papers provided a derivation of Equation 7-4 by analytical inte-
gration of Equation 6-8 under certain simplifying homogeneous conditions
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(e.g., Veigele and Head, 1978; Huang, 1979; Melli and Runca, 1979; Lupini and
Tirabassi, 1979; Robson, 1983; Seinfeld, 1986). We should not state, however,
that the Gaussian Equation 7-4 is a particular solution of Equation 6-8. In fact, if
Equation 7-4 is derived from Equation 6-8, a condition is imposed on the
plume’s g, and g,. In the homogeneous case, this condition is

0n = V2Kuxit = 2Ky (7-71)

and

g; = \/2 K33X/E (7—72)

Equations 7-71 and 7-72 limit the sigma growth so that it is proportional to x°-5,
while Gaussian plume simulations benefit from the use of semiempirical ¢ func-
tions that vary from —x%3 to —x!-5.

Numerical and analytical integrations of Equation 6-8 in
nonhomogeneous conditions show concentration solutions that are more realistic,
in the sense that the plume sigmas are proportional to x* with b > 0.5. Neverthe-
less, K-theory simulations always present difficulties in reproducing dispersion
experiments in unstable conditions. What we want to emphasize here, however,
is that the Gaussian equation cannot be considered a particular solution of Equa-
tion 6-8, even though its form can.

7.10.4 The Gaussian Equations as a Particular Solution of the Lagrangian
Equation

All Gaussian plume and puff equations can be seen as a particular solu-
tion of the fundamental Lagrangian Equation 8-1, as discussed in the next
Chapter.
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