LAGRANGIAN DISPERSION
MODELS

As introduced in Chapter 6, Lagrangian models provide an alternative
method for simulating atmospheric diffusion. They are called Lagrangian be-
cause they describe fluid elements that follow the instantaneous flow. The
“Lagrangian” term was initially used to distinguish the Lagrangian box models
described in Section 8.2 from the Eulerian box models described in Section 6.4.
In this case, the difference is manifest, since the Eulerian box does not move,
while the Lagrangian box follows the average wind trajectory. The term has,
however, been extended to describe all models in which plumes are broken up
into “elements,” such as segments (see Section 7.7), puffs (see Section 7.8) or
fictitious particles (see Section 8.3).

Several efforts have been made to understand and parameterize the rela-
tionship between equivalent atmospheric parameters as seen in an Eulerian and a
Lagrangian view. Hanna (1979) performed statistical analyses of wind fluctua-
tions and showed that both Lagrangian and Eulerian observations of wind speed
fluctuations u’ can be simulated by the linear first-order autoregression relation-
ship

u'(t+Ar) = u'(t) R(AY) + u'() (8-1)

where R(At ) is the autocorrelation coefficient at time lag At and u'’ is a random
component. Davis (1982) examined various theories that aim at relating the ve-
locity statistics of Lagrangian particles to the statistics of the Eulerian flow in
which they move. Novikov (1969) proposed a connection between Lagrangian
and Eulerian probabilities that was then generalized (Novikov, 1986) to fluids
with variable density. In spite of the above efforts (and others), uncertainties still
persist and a fully acceptable theoretical relationship between Eulerian and
Lagrangian variables has not yet been developed (or, if it has, has not been fully
tested against experimental data; testing is complicated by the fact that reliable
Lagrangian measurements are scarce).
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8.1 THE LAGRANGIAN APPROACH

The fundamental Lagrangian equation for atmospheric dispersion of a sin-
gle pollutant species is

<crn)> = | j p(r, tlr', ') S(', ') dr’ dt’ (8-2)

- ®

where the integration in space is performed over the entire atmospheric domain;
<c(r,t)> is the ensemble average concentration at r at time ¢; S(r’,t’) is the source
term (mass volume™! time™'); and p(r,t|r’,t’) is the probability density function
(volume™1) that an air parcel moves from r’ at ¢’ to r at t, where, for any r’ and
t>t,

[ padr, ) dr <1 (8-3)

The expression in Equation 8-3 can be less than one when chemical or deposi-
tion phenomena are considered; otherwise, mass conservation always requires
the value to be equal to one. For a primary pollutant, S(r’,t) is greater than zero
only at points r’ where the pollutant is released (e.g., the exit points of stacks).
For a secondary pollutant, S(r’,t") can be nonzero virtually anywhere. For both
primary and secondary pollutants, however, Equation 8-3, which represents mass
conservation, must be satisfied.

Since it is often difficult to evaluate the entire emission “history” S(r’,t)
for —oo < t’ < t, Equation 8-2 can be rewritten as the sum of two integral terms

<c(r, > = f p(x, tr', t,) < c(r', t,) > dr’

t (8"4)

+J j p(r,tr', t") S, ") dr’ dt’
to

in which only the contribution of the sources during ¢, < t' < t needs to be
included, since the first integral term accounts for the source contribution before
t,. However, Equation 8-4 requires some estimate of the average concentration
<c> at t, throughout the computational domain.

It must be pointed out that the use of Equation 8-4 instead of Equa-
tion 8-2 may be incorrect when the exact fractional impact of a specific source
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(or group of sources) needs to be estimated. In fact, when using Equation 8-4,
known background concentrations can be used to estimate the term <c(r’,z,)>.
But, by so doing, the contribution of a specific source to the concentration
<c(r,t)> becomes the sum of two terms: (1) the direct contribution of the second
integral of Equation 8-4, and (2) the indirect contribution of the source to the
background concentration <c(r’,z,)>. When these two contributions are of the
same order of magnitude, as in long-range regional modeling applications, the
fractional impact of a specific source becomes difficult to evaluate because, even
when the second integral of Equation 8-4 is computed correctly, the contribution
of a source to background concentrations is difficult to calculate.

The key parameter in the above equations is the probability density func-
tion p, which, for nonreactive pollutants, is a function of only the meteorology
(and the type of pollutant when deposition phenomena are considered). Equa-
tions 8-2 or 8-4 represent a rigorous description of transport and diffusion proc-
esses expressed in a probabilistic notation. The full incorporation of chemical
reactions, however, is difficult.

Different assumptions concerning the probability density function p allow
the derivation of both Gaussian equations and the K-theory equation, as was
illustrated in Figure 6-1. Seinfeld (1975) shows that all Gaussian plume and puff
formulas can be derived from the Lagrangian equation (8-2) under the following
simplifying assumptions:

1. Turbulence is stationary and homogeneous; i.e.,
p@, tr', t') = pir-r', t-t) (8-5)
2. p obeys a multidimensional normal distribution; i.e.,

pr-r, t-t) = exp [-£TP1g/2 ] (8-6)

where each element F; of the matrix P is (i and j = 1, 2, or 3)
P = <G> (8-7)
and the “displacements” §; are
&G = |r-r'|i - |<r-r'>|; (8-8)

in which i indicates the space component (x, y, or z, for i = 1, 2,
or 3, respectively).
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3. The term <r - r’> is the average displacement, which is assumed
to be due only to the average (deterministic) wind @.

4. Py =0, forisj.

Several types of models can be classified as Lagrangian:

. Lagrangian box, or trajectory, models, which are used for
photochemical simulations (see Section 8.2 below)

. Gaussian segmented plume models, which have been discussed in
Section 7.7

J Gaussian puff models, which have discussed in Section 7.8

. Particle models (see Section 8.3 below)

8.2 LAGRANGIAN BOX MODELS

Lagrangian box models are similar to the Eulerian box models presented
in Section 6.4, with the important difference that a Lagrangian box is a moving
box that is advected horizontally according to the local time-varying average
wind speed and direction, as illustrated in Figure 8-1 (for a single box) and
Figure 8-2 (for a vertical column of boxes, which allows explicit computation of
vertical diffusion).

This technique is particularly useful for photochemical simulations (see
Chapter 9) and provides average time-varying concentration estimates along the
trajectory of the box. The major shortcoming of this technique is the forced as-
sumption of a constant wind speed and direction throughout the PBL, while, in
reality, wind shear plays an important role. Another problem of Lagrangian box
models is the difficulty in comparing their outputs (i.e., time-varying concentra-
tions along a trajectory) with fixed (Eulerian) air quality monitoring data.

Several Lagrangian box models have been developed for simulating
photochemical reactions inside a moving air mass. This development was
triggered by the high computational costs of Eulerian photochemical models, in
which chemical and photochemical reactions need to be computed in each fixed
grid cell of the three-dimensional computational domain. Lagrangian box mod-
els, instead, perform these calculations on a smaller number of moving cells, as
outlined in Figures 8-1 and 8-2 for the REM2 model and the DIFKIN model,

respectively.
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More recently, two advanced Lagrangian photochemical models have been
developed: the TRACE model (Tran, 1981) and the PLMSTAR model (Lurmann
et al., 1985). TRACE uses a two-dimensional wall of cells moving along a speci-
fied trajectory to simulate the transport of a plume parcel from a source to a
receptor. Figure 8-3 shows the moving wall of cells in which TRACE simulates
the effects of vertical and horizontal diffusion, emission of primary pollutants
from all the source regions entrained by the moving wall, nonlinear
photochemical transformations, initial and boundary conditions. The TRACE
model solves numerically the following set of coupled, nonlinear, partial differen-
tial equations (conservation of mass)

ac; d ac; 0 ac;
% _ Ok L)y S|k, Zi) v R+ S +D 8-9
ot ay(yay)+az(zaz)+'+s’+‘ (8-9)

where ¢; is the concentration of the i-th species; X, and K, are the eddy diffu-
sion coefficients in the crosswind and vertical direction, respectively; R; is the
rate of chemical transformation of the i-th species (creation or removal); S; is
the rate of emission of the i-th species along the trajectory; and D; is the rate of
deposition of the i-th species.

PLMSTAR is a mesoscale Lagrangian photochemical model designed to
simulate the behavior of pollutants in chemically reactive plumes interacting with
background concentrations. PLMSTAR, like TRACE, considers a moving wall of
cells, usually five in the vertical and nine in the horizontal directions. In its move-
ment, the air parcel entrains emissions from other surface or elevated sources.
Pollutants within each cell undergo horizontal and turbulent diffusion, chemical
reactions and dry deposition.

8.3 PARTICLE MODELS

Particle modeling is the most recent and powerful computational tool for
the numerical discretization of a physical system. It has been particularly suc-
cessful in a wide spectrum of applications (Hockney and Eastwood, 1981), that
range from the atomic scale (electron flow in semiconductors, molecular dynam-
ics) to the astronomical scale (galaxy dynamics), with other important applica-
tions to plasma and turbulent fluid dynamics. Particle models handle the trans-
port terms, whose correct numerical treatment is very difficult with Eulerian
(grid) models, in a straightforward manner. Particles, in fact, have a Lagrangian
nature, since they move following the main flow. For this reason, they are often
called Lagrangian particles.
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Particle models use a certain number of computational (fictitious) parti-
cles to simulate the dynamics of a selected parameter (e.g., mass, heat, electrical
charge density, etc.). Particle motion can be produced by both deterministic
velocities and semirandom pseudovelocities generated using Monte-Carlo tech-
niques. In the latter case, the trajectory of a single particle simply respresents a
realization from an infinite set of possible solutions. Important characteristics of
the diffusion process can be inferred, however, from the computation of average
particle ensemble properties, which are not affected by the randomness of the
pseudovelocities if enough particles. are used.

Three main types of particle models can be defined (Hockney and
Eastwood, 1981):

. particle-particle (PP) models, in which all interaction forces (e.g.,
gravitational or electric forces) between particles are computed at
each time step

. particle-mesh (PM) models, in which forces are computed using a
field equation (on a grid) for the potential

. PP-PM or (P3M) models, a hybrid approach, in which interparticle
forces are split into a short-range component (computed using the
PP method) and a slowly varying one (represented in a mesh sys-
tem by the PM method)

Length and time scales (as in all discretization systems) play an important
role in particle models. In particular, the relation between the actual physical
particles (or elements) and the computer model simulation particles is an impor-
tant factor for the interpretation of the simulation results. In general, three possi-

ble cases can be found (Hockney and Eastwood, 1981):

. a one-to-one correspondence between actual and simulated parti-
cles, as, for example, in molecular dynamics simulation

. a description of fluid elements (position, vorticity) as particles, as,
for example, in vortex fluid simulations, where the correspondence
to physical particles (molecules) is totally lost

. the use of “superparticles;” i.e., simulation particles representing a
cloud of physical particles having similar characteristics

Particle models have mostly been applied to simulate (and understand)
the spiral structure of the galaxies, to simulate plasma dynamics and the electron
flow in semiconductors, and to obtain realistic representations of turbulence in
fluid.
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In air pollution applications, using Lagrangian particle methods, emitted
gaseous material is characterized by a set of computational particles and each
particle is “moved” at each time step by pseudovelocities, which take into ac-
count the three basic dispersion components: 1) the transport due to the mean
fluid velocity; 2) the (seemingly) random turbulent fluctuations of wind compo-
nents (both horizontal and vertical); and 3) the molecular diffusion (if not negli-
gible). After the pioneering work of Smith (1968) and Hall (1975), Lamb (1978)
simulated vertical turbulent phenomena by assigning to each particle a velocity

W= Wy + W (8-10)

where the first term w,; was determined by the Eulerian numerical model of
Deardorff (1974) and w, was a stochastic term describing the effect of subgrid
fluctuations not included in the numerical model. (The term w, was generated
every eight seconds on a grid with Az = 50 m and, therefore, contained a large
fraction of the fluctuating turbulent velocities that, in other models, are simulated
by the stochastic terms.) Zannetti (1981, 1984) introduced a scheme for the in-
clusion of the cross correlation among the velocity fluctuations. Baerentsen and
Berkowicz (1984) used two separate equations to describe particle updrafts and
downdrafts, under the assumption that the physics of the two phenomena is dif-

ferent.

As illustrated by de Baas et al. (1986), most particle modeling studies of
air quality phenomena are numerical solutions of the Langevin stochastic differ-
ential equation (Reid, 1979; Gifford, 1982; Sawford, 1984)

dw = - (w/Tp)dt + du (8-11)

where w is any component of the Lagrangian particle velocity, 7, is its
Lagrangian time scale, and du are random velocity increments. The use of this
equation, its limitations and possible improvements are described in Sec-
tion 8.3.5. Several of the concepts introduced above and related to the use of
particle modeling in the simulation of atmospheric diffusion will be expanded in
the following sections.

8.3.1 Simulation of Atmospheric Diffusion by Particle Models

Equation 8-2 or 8-4 can be solved analytically or numerically. For exam-
ple, as discussed before, a Gaussian distribution of p, together with other
simplifying assumptions, allows the derivation of Gaussian plume and puff equa-
tions for <c>. More complex functions of p require numerical integrations.

An intuitive solution of Equation 8-2 or 8-4 can be obtained if a set of
dynamic atmospheric trajectories of pollutant mass can be generated. Then, for
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each trajectory originating from r’ at ¢, we have p(r,t|r’,t") = 0 everywhere, ex-
cept at the exact location r = r*, where the trajectory point is located at ¢, thus
giving p(r,t|r’,t") = & (r* - r). Therefore, if realistic air parcel trajectories can be
computed, the simple calculation of the density of the trajectory points provides
an estimate of <c>. This is the conceptual basis of a “particle” model for atmos-
pheric dispersion, i.e., a model in which a set of “tracers” (or fictitious computa-
tional particles) are used to describe the dynamics of the atmosphere.

Particle models can be used to characterize atmospheric dispersion in two
simulation modes: the “single-particle” mode, in which the motion of each parti-
cle is independent from the others and, therefore, obeys one-particle statistics;
and the “two-particle” mode, used to reproduce relative dispersion, e.g., the dis-
persion properties of a single puff in relation to its center of mass. The second
approach has been investigated by several authors (Durbin, 1980; Lamb, 1981;
Sawford, 1983; Lee et al., 1985) and, in particular, by Gifford (1982), who used
the simple Langevin Equation 8-11 to simulate relative dispersion by constrain-
ing the initial particle velocity (see Sawford, 1984, for further discussion of this
topic). In the rest of this chapter we will discuss “single-particle” models.

In air pollution applications, simulation particles are moved at each time
step by a velocity u,, which is sometimes called a “pseudovelocity” to emphasize
that we do not need to follow precisely each molecule in the atmospheric turbu-
lent flow, but only to define an algorithm for particle displacement computation
that gives an accurate density distribution, i.e., an ensemble average. In mathe-
matical notation, if a particle is located in x(¢;) at time ¢,, its position at time ¢,
will be

71

x(t) = x(t) + f ulx(?),] dt (8-12)

131

where u is the “instantaneous” wind vector in each point x(f) of the particle
trajectory between t; and t,.

Atmospheric turbulent properties make u practically impossible to know,
especially due to semirandom components caused by atmospheric turbulent ed-
dies. But the “equivalent” or “effective” wind vector u, can be considered

u, = [ulx(t), 1] di/(t2 - 1) (8-13)

t

which moves the particle directly from x(¢;) to x(zz) in the interval (¢;, t;). The
problem is then to estimate u, from Eulerian measurements of u, keeping in
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mind that u, must approximate the integral term in Equation 8-13 only on a
particle ensemble basis. For example, we can define

u = T+ u (8-14)

where T is the best estimate of the average Eulerian wind vector (transport) at
the particle location, and u’ is a “diffusivity velocity.” In other words, T (a
smoothly variable term) represents our deterministic understanding of the aver-
age transport process, based on Eulerian wind measurement interpolation or pro-
vided by a meteorological model, while u’ is an artificial numerical perturbation,
which is related to the turbulence intensities and characteristics of those smaller
eddies that are not included in the @ field.

Since, in Equation 8-14, @ is assumed to be known from measurements
and/or meteorological model outputs, computing u’ is the key problem of
Lagrangian particle modeling. Two fundamental approaches can be followed: the
deterministic approach, which represents a numerical procedure for solving the
diffusion equation, and the statistical approach, which actually models the ran-
domness of the trajectories of fluid elements. Both approaches are discussed
below.

8.3.2 Deterministic Calculation of u’

A typical example of the deterministic approach is given by the particle-
in-cell method (Lange, 1978; Rodriguez et al., 1982), in which, after some ma-
nipulation of the K-theory diffusion equation, the following relation is obtained

= (-f) Ve (8-15)

where X is the eddy diffusion coefficient and ¢ the concentration, computed from
particle density. This method generally requires partitioning the computational
domain into cells in order to calculate c. It is able to duplicate K-theory disper-
sion, with the important feature of decreasing the numerical advection errors
otherwise produced by finite-difference solutions. Using this method, the motion
of a single particle will be affected by the time-varying concentration field c, i.e.,
by the positions of the other particles.

8.3.3 Statistical Calculation of u’

The statistical approach (Monte Carlo-type models) seems more flexible
and appealing than the deterministic approach. According to the statistical ap-
proach, u’ is a semirandom component computed by manipulating computer—
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generated random numbers. To perform this computation, it has generally been

assumed that Eulerian measurements of u can provide statistical information
!

on u’.

If we accept this assumption, we can use, for the diffusivity velocity u’, a
statistical generation scheme based on our understanding (and Eulerian measure-
ments) of u. In particular, Hanna (1979) has shown that it is a plausible assump-
tion to describe both Eulerian and Lagrangian wind vector fluctuations by a sim-
ple Markov process (autocorrelation process of the first order). If we extend this
assumption to u’, we have(*)

u'(tz) = RAN u'(ty) + u"(12) (8-16)

where R(A¢) is a vector containing the autocorrelations with lag At = ¢, - t; of
the u’ components, and u’’ is a purely random vector that will be discussed
further below.

Equation 8-16 is the key formula for statistically computing u’. It is a
recursive sum of two terms: the first is a function of the “previous” u’ of the
same particle, and the second is purely randomly generated. Since
Equation 8-16 is computed independently for each particle, two eventually co-
incident particles at ¢; will have, in general, different displacements, even if their
past “history” is exactly the same. Using this approach, the motion of a particle
is not affected by the position of the other particles and, therefore, this numerical
algorithm is extremely fast, since no interacting forces need to be computed.

To apply Equation 8-16, we need the initial u’(¢,) for each particle at its
generation time ¢, (often assumed to be a zero vector or random with variance
¢2) and the dynamic computation of R and u’’. R can be related to Lagrangian
turbulence time scales by

R(At) = exp [-At/T.] (8-17)

where T, is a vector containing the two horizontal and the one vertical
Lagrangian time scales(**). Generally, Lagrangian measurements of T, are not
available, but empirical relations have been proposed (e.g., Hanna, in Nieuwstadt
and van Dop, 1982) to estimate T, from Eulerian meteorological measurements
(see Section 8.3.6).

(*) In this formula (and the following ones in this chapter), when vectors appear on both
sides of an equation, each component of the vector on the left side is computed using only
the corresponding component of each vector in the right side (componentwise notation).

(**) Other equations have been proposed instead of Equation 8-17. Note, however, that it is
essential that R is exponential if results are to be independent of At (Thomson, personal
communication).
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Assuming u’’ a purely random vector with zero-mean, normally-
distributed independent componerits, we have that u’’ is completely characterized
by 0,~; i.e., the standard deviations of its components. By taking the variances of
Equation 8-16, we obtain

o = 0,[1-R3A1)]/? (8-18)

Equation 8-18 requires the knowledge of 0./, the standard deviations of the com-
ponents u’, which, again, can be approximated by the standard deviations of
available Eulerian wind measurements. Therefore, using the standard deviations
0,» computed by Equation 8-18, it is easy, with commonly available Monte-
Carlo computer programs, to generate each particle’s u’’ term for use in Equa-
tion 8-16.

As discussed in Section 8.3.5, it has been established that the develop-
ment leading to Equation 8-18 is valid only for stationary, homogeneous and
isotropic turbulence. Nevertheless, in situations where meteorological gradients
are not too strong, R and 0,/ can be considered space and time dependent (but
assumed constant between ¢; and ¢, to derive Equation 8-18). Therefore, they
can fully incorporate, when available, time-varying three-dimensional meteoro-
logical input (Eulerian values) and can simulate, with a high degree of spatial
and temporal resolution, extremely complex atmospheric diffusion conditions,
which are impossible to treat with other numerical schemes. This approach is
grid-free, since, even when the meteorological input T, R and 0, is given at grid
points, each particle can move according to meteorological values that can be
interpolated exactly at the particle’s location. This provides a high degree of
resolution, which is controlled only by the number of particles and the length of
the time interval At, and not by the spatial discretization of the computational
domain.

Hanna (in Nieuwstadt and van Dop, 1982) proposed a set of semi-
empirical formulae that, from a limited number of meteorological parameters (4,
L, w., z,, and u,) provide the meteorological input at each particle’s elevation z
required by Equations 8-16 through 8-18. This scheme, in which the subscripts a
and c indicate the along-wind and cross-wind horizontal components, respec-
tively, is described below.
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° Unstable Conditions
In unstable conditions, the horizontal components of 6,/ are constant, i.e.,
Ou, = Ou, = U (12 + 0.5K/|L)Y? = J0.31 w, (8-19)
while the vertical component varies with z as follows:

3z LY/3
Oy = 0.96 w, (T - —};) (8—20)

for z < 0.03 k;

1/3 0.175
0y, = w, min [0.96 (3’25 - %) ; 0.763 (%) ] (8-21)

for 0.03 h <2< 0.4 h;
2)0-207
gy, = 0.722 w, (l - —h—) (8-22)

for 0.4 h < z < 0.96 h; and
oy, = 037w, (8-23)
for 0.96 h < z < h.

The autocorrelations are computed by Equation 8-17, where the two hori-
zontal components of T, are constant, i.e.,

h

Ty, = Ty, = 0.15 (8-24)
Oy,
and the vertical component varies with z as follows:
z
T, = 0.1 (8-25)

2 0u,[0.55 + 0.38 (z-2,)/L]
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forz<0l1handz-z >-L;

Ty, = 0.59 (8-26)
. Ul-l'z
forz<0.1handz-z, <-L; and
h 5z
I; = 0.15 1 - exp|-— 8-27

for z > 0.1 A.
° Stable Conditions

In stable conditions, % represents the top of the mechanically turbulent
layer above the ground and can be evaluated by Equation 3-8 or by

h = 0.25u, L/f (8-28)

The components of g,/ vary with z as follows

O, = 2.0 1, (1 - %) (8-29)

oy, =0, =1.3u, (1 - %) (8-30)

while the autocorrelations are computed by Equation 8-17 with

0.5
T, =015 (i) (8-31)
a ou, \h
h (205
T, = 0.07 Z 8-32
fe Oy, (h) ( ’ )

c

and

5
]

ou, \ A

= 0.10 h (i)o's (8-33)
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[ Neutral Conditions

In neutral conditions, the components of g,/ are
oy, = 2.0u, exp(- 3fz/u.) (8-34)
and
oy, =0y, =1.3u, exp(-2fz/u,) (8-35)

while the autocorrelations are computed again by Equation 8-17 with

0.5z/0y.
T, =T, =T, = ————4— 8-36
La Le L= 1% 15 fz/u. ( )

In addition to the above formulation, it is generally assumed that u’ = 0
for z > h and that the particles are totally or partially reflected at the ground and
at the top of the PBL -- an operation that also requires a change of sign in the
“memory” u; of each reflected particle.

8.3.4 The Introduction of the Cross-Correlations

Using Monte-Carlo techniques, it is necessary to simulate realistically the
wind fluctuation behavior in a way that is consistent with measured characteris-
tics. Several current models are based on Equation 8-16, which assumes that the
components of u’ are statistically independent. This assumption is in disagree-
ment with wind fluctuation measurements, which indicate the existence of non-
zero cross—correlation terms. Therefore, Equation 8-16 can be, in many cases,
an oversimplification of the atmospheric dispersion processes.

Zannetti (1981), Ley (1982) and Legg (1983) have proposed schemes that
include the negative correlation u'w’ between the “along-wind” component u’
and the vertical component w’'. For example, Zannetti (1981, 1984) developed
the scheme

us(t2) = Prua(t) + ug(tz) (8-37)

@2 uc(ts) + u(t2) (8-38)

uc (t2)

u;(tz) = @3 uz(t) + Paua(tz) + uz(tz) (8-39)
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in which the vector u’ is seen in a “flux-coordinate” system where
u' = (ua, U, uy) (8-40)

and u, is the horizontal component along the average wind direction, u’ is the
horizontal cross-wind component, and u; is the vertical component. Note that,
since the average wind direction varies with space and time, each particle will
have, in general, its own time-varying reference system, determined by the hori-
zontal direction of W, as defined by Equation 8-14, at the particle’s location.

By analytical manipulations of Equations 8-37 through 8-39, the parame-
ters @1, @2, @3, Pa, 0z, 04y, and o,y are calculated by

b1 = iy (B) | (38-41)
$2 = ra(AD) (8-42)
e, (Af) - ¢y ru%a u, (0)

b = 1 - ¢irk . (0) o

_ hgu (0 g [1 - ¢y (A)] 8-44
s ou, [1 - #112,., 0] o

and

oy = of, (1 - ¢} (8-45)
ok =% (1-¢3) (8-46)

Q
1]

o = 0p (1-93) - 9300, - 2 ¢1 93 Pa Ty, (0) 0wy, Oy (8-47)

where 1, (Af), 1., (A1), r,,(Af) are the autocorrelations, with time lag
At = t; - t;, of the components of u’, as defined by Equation 8-40; r,, .., (0) is
the cross—correlation, with no time lag, between u; and u;; 0,3, o,y and o0,y are
the standard deviations of the components of the vector u'’’

u' o= (g, w, w') (8-48)

where these components are uncorrelated zero-averaged Gaussian noises (i.e.,

random numbers); and o,,, 0,,, 0, are the standard deviations of the
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u’ components. The parameters in Equations 8-41 through 8-47 can vary with
space and time, but are assumed constant between ¢; and t;.

The above method is able to generate a time-varying u’ with any theoreti-
cally acceptable degree of auto- and cross-correlations, if the meteorological
input is known. The meteorological input r,., (A?), 1., (Af), 1, (AY), Ouy, Ou,,
and 0., can be obtained using Hanna’s scheme presented in the previous sec-
tion, while the extra term r,,,,(0) can be estimated at the ground, by analogy
with the Eulerian relationship of Equation 3-2, by

u?

8-49
> (8-49)

[ru',, u'’y (O) ]z=o = -

Equation 8-49 can be linearly interpolated from z = 0 to z = h, where
[ru, ,,',(0)]2=h = 0, thus giving, at a generic z below &,

[Fuy s 0], = - u (1—5) (8-50)

0y, Ou, h

If direct measurements of 0, are available, they can be used directly
(e.g., by interpolation at different altitudes) instead of using the semiempirical
formulae described above. For example, measurements of gy, the standard de-
viation of the horizontal wind direction, can be used to calculate o, , through the
relationship

Ou, = U0y (8-51)

where i is the average horizontal wind speed and o, is expressed in radians. If
measurements of u’ are performed in a fixed orthogonal system x,y,z, i.e.,

u = (U, uy, uz) (8-52)

then, the standard deviations o,; and Ouy allow the calculation of g, and o,
by using (Zannetti, 1984)

i7 =2 42

2 .2
u, O'u& - u, Oy
a“'a = — - Y (8"53)
Uy — Uy
=2 2 72 2
u, o, - u,0o,
oy s Y Yx (8-54)

u? - ur
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where i, and %, are the horizontal components of the average wind 7 in the
fixed coordinate system. Equations 8-53 and 8-54 are derived by assuming that
the u, and u; are not cross-correlated. Also note that these equations are not
valid when |&Z;| =~ ||, i.e., when the average wind direction is blowing with an
angle of 45 degrees, 135 degrees, 225 degrees, and 315 degrees with respect to
the x-axis (in these cases, no alternative equations can be provided; the system
orientation simply does not allow discrimination between along-wind and
crosswind fluctuations).

Zannetti (1986) expanded the scheme of Equations 8-37 through 8-39 to
work in a generic fixed orthogonal system x,y,z, which requires the incorporation
of all three cross—correlations among the u’ components. The system becomes

uy(t2) = fue(ts) + w(t2) (8-55)
uy(tz) = fouy(t) + fiux(t2) + uy (t2) (8-56)
uz(t2) = fauz(t) + fsuy(tz) + foue(t2) + uy (t2) (8-57)

Again, this system is able to generate a time sequence of u’ values with any
theoretically acceptable degree of auto- and cross-correlation, if the meteorologi-
cal input is specified. For Equations 8-55 through 8-57, the meteorological input
must include the three cross—correlations Tl u) 0), ru,4;(0), and Tujyu ,(0). Al-
gebraic manipulations allow the deviation of the parameters f;, f;, f3, ﬂ, 5. f6
and the standard derivations oy, O » Ouy from the meteorological input, as
follows. First, analytical manipulation of Equations 8-55 and 8-56 allow the deri-
vation of '

h = ry(AY) (8-58)

o =04 (-1 (8-59)

u

5 = ru,(A) - ry, (A1) r/ '( ) (8-60)

1-1r2 (At)r, ,()
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PR ©0) oy, [1 - r, (A1) 1 (AD)] (8-61)
oy [1 - g (A 7k s (0)]

and

or = 0n (1-f3) - B0l - 2ff2fs i, (0) 0w 0y (8-62)

Then, the terms f;, fs and f; are computed by solving the linear system

Q44 Qg5 Qg6 Ja b,
Qs4 Ass Ase fs} = |bs (8-63)
Q64 Q65 Qes fe be
with .
Qa4 = Uu'z . (8"64)
ass = faTuyuy (0) Ouy + f3 i Tureuy (0) 0wy (8-65)
Q46 = f1Tuyuy(0) O, (8-66)
ass = fi Tu' uy 0) Ou (8-67)

ass = fifaTuyuy(0) 0wy, + fifsruy (A1) 0wy + fyou, (1-£3) (8-68)

Asg = f1 r,,;‘(At) Oy, + Oy, (1 —f%) (8—69)
asa = f2 ru’y u'z(o) 0"3' Oy + fh ry, u’z(o) Oy, Oy, (8-70)
ags = f rus’(At) 033, + f3ry, 'u;(O) Oy, Ouy + O',,Zryv (8-71)

ags = fofiruuy(0) 0wy Ouy + f30%, (8-72)
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and
by = ru(At) oy, (8-73)
bs = ruu;,(0) oy, (8-74)
bs = ruyu;(0) 0Ouy Ouy (8-75)

This system allows a numerical solution of Equation 8-63. (An analytical solu-
tion for f;, fs5, and fs could be derived but is too cumbersome.)

Finally, the last term g,y is given by

(]

o2, (1-f) - fi o - fid},

(732

2fafs [f2 ’u;u'z(o) Uus, Oy, + f3f1 ru}u’z(o) Oy, Uu’z] (8'76)

2fafs fi rus,u’z(o) Oy, Ou, - 2f5f6 ru:vus,(o) oy, 0"3'

It must be pointed out that the methods dealing with the cross—correlations
presented above may be inherently inconsistent. At the end of Section 8.3.5,
however, we propose a simple mechanism to incorporate these methods into an
acceptable theoretical frame.

8.3.5 Simulation of Convective Conditions by Monte-Carlo Particle Models

Some of the most interesting developments of particle modeling have fo-
cused on the one-dimensional (i.e., vertical) simulation of convective dispersion
conditions, and on the use of the Langevin Equation 8-11 to simulate the
Lagrangian vertical velocity w of each particle. As summarized and clarified by
de Baas et al. (1986), Equation 8-11 can provide different sets of simulation
outputs, depending upon the specification of the random velocity increments du .

In homogeneous turbulence, we have

du=0 (8-77)
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(@w? = 22 dtTy (8-78)

du’ =0 (8-79)

where u, is the vertical wind component. Under these limiting conditions and
with dt = t, - t;, Equation 8-11 becomes equivalent to the vertical component of
Equation 8-16. In this case, particle simulations are able to reproduce (e.g., see
the simulations of Brusasca et al., 1987, using the MC-LAGPAR model) the
theoretical results obtained by Taylor (1921) for homogeneous turbulence as il-
lustrated in Figure 8-4.

Convective conditions in the atmosphere, however, are strongly character-
ized by nonhomogeneous conditions in which, for example, uZ varies with the
height z. In this situation, if Equation 8-11 is used together with Equation 8-78
and a term u2(z) that varies with z, particles have a tendency to be trapped,
without any physical justifications, in regions with lower 2 . This accumulation is
avoided or minimized by changing Equation 8-77 into

du = dt du2/az (8-80)

which represents a nonzero mean random forcing (i.e., a drift velocity) propor-
tional to the vertical gradient of ;g_(z). Legg and Raupach (1982) and Ley and
Thomson (1983) proposed the use of Equation 8-80 and justified its validity by
analyzing the Navier-Stokes equations and concluding that a gradient of uZ in-
duces a mean pressure force that must be incorporated, through Equation 8-80,
into the Langevin Equation 8-11. Similar considerations and results, using the
Fokker-Plank equation (which can be seen as the Eulerian equivalent of the
Langevin equation), were obtained by Janicke (1981). Other authors (e.g.,
Wilson et al., 1981, and Sawford, 1985) proposed drift velocity formulations dif-
ferent from Equation 8-80. This second group of formulations, however, seems
less appropriate than Equation 8-80, since it contains the instantaneous term u;,
which interferes with the definition of 7, and the correct calculation of the
autocorrelation.

A different approach for the treatment of convective conditions by
Baerentsen and Berkovicz (1984) and Brusasca et al. (1987) uses two Langevin
equations for updrafts and downdrafts, respectively. This allows an explicit,
more realistic treatment of the known behavior of air parcel velocities in unstable
conditions, in which ascent velocities are stronger than descent velocities, but
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Figure 8-4. Concentration as a function of a downwind distance (from Brusasca
et al., 1987). [Reprinted with permission from Computational Me-
chanics Publications.]

Curve A: ground-level  concentration  simulated by
MC-LAGPAR

Curve B: centerline plume concentration simulated by
MC-LAGPAR

Curve C: ground-level concentration computed with the
analytical solution of Taylor (1921)

Curve D: centerline plume concentration computed with
the analytical solution of Taylor (1921)

with shorter duration. For example, Yamamoto et al. (1982) measured average
ascent velocities u; in the range of 0.5 w, to 0.6 w,, while Briggs (1975) pro-
posed 0.4 w, as a suitable average descent velocity u,. Both Baerentsen and
Berkowicz (1984) and Brusasca et al. (1987) allow a probabilistic “jumping” of
each particle from an updraft to a downdraft, and vice versa, with probabilities
that depend upon the time 'scales of the two phenomena. These methods implic-
itly assume that updrafts and downdrafts are not included in the average i,
terms of Equation 8-14 and do not affect the 0., terms (otherwise, updrafts and
downdrafts terms would be included twice in the calculations).
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The most appealing approach for the treatment of convective conditions is
the incorporation of an appropriate term (d;t)3 into the Langevin equation, in-
stead of simply using Equation 8-79. This incorporation has been developed by
Thomson (1984) and van Dop et al. (1985) and successfully tested by de Baas
et al. (1986). They derived the following expressions for the random forcing
function du (instead of Equations 8-77 through 8-79)

du = At [3u2(z)/o7] (8-81)

@7 = Mt[2uZ@)/TL + ou3(2)/02] (8-82)

x

~
©
]

@° = At [3u3Q)/T, + oudD/oz - 312() auZ()/az]  (8-83)

These equations were obtained by Thomson (1984) by imposing the conditions
that, for large times, the distribution of particles in the phase space possesses the
same distribution as the air.

The use of Equations 8-81 through 8-83 requires the generation of non-
Gaussian terms du from a skewed distribution function P(du). Baerentsen and
Berkowicz (1984) and de Baas et al. (1986) calculate P(du) by choosing du from
two Gaussian distributions P; = N(m;,0;) and P, = N(my, 0;) with a chance ¢
and (1 - g), respectively. This allows the derivation of the relationships

gmy + (1-q)my = du (8-84)

q(m? + ?) + (1-g) (m3 + o3) = (du)* (8-85)
and ,

g(m}+3mod) + (1-q) m3 + 3m; 03) = (du)® (8-86)

which can be used with the simplifying assumptions of m? = o% and m? = o3,
since the above equations have two degrees of freedom.

The Langevin Equation 8-11 is approximated by de Baas et al. (1986) in
a finite different form, using the explicit, fast and unconditionally stable scheme

w(t+At) = w(t) (1-0.5At/Ty) (1+0.5 At/T)™ + du (1+0.5 At/T;)™! (8-87)

2+ A = z() + 0.5 Ar[w(t+Af) + w(r)] (8-88)
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where z is the altitude of the particle, w is the Lagrangian vertical velocity of the
particle, and the random terms du are computed using Equations 8-81 through
8-83 and numerically generated from the two Gaussian distributions P; and 7,
according to Equations 8-84 through 8-86.

Further assumptions are made by de Baas et al. (1986) to simulate
convective conditions. Using mixed layer scaling they assume the profile of the
second moment to be

ut(z)/w? = 1.54 (2/2)*> exp(- 2 z/z) (8-89)
for z > 0.0025 z;, and
uz = 0.028 w2 (8-90)
for z < 0.0025 z; . Also, they assume the following profile for the third moment
u2@)/w? = 1.4 (z/z) exp(-2.5z/z) (8-91)
and a constant Ty
T, = czi/w. (8-92)
with ¢ = 1, instead of the common assumption of ¢ = 0.24 - 0.55 (Hanna, 1981),
which requires some slight adjustments of the profile of u3(z) at the top of the

PBL, to satisfy the requirement that (du)? > 0 at all heights. Finally, they assume
the fourth moment to be

2
u(z) = a(u}(z)) (8-93)
with @ = 3, since no measurements of the fourth moment are available. Simula-
tions are performed by generating particles at a source height z = z; with initial

(i.e., t = 0) Lagrangian velocities w that obey the relationships

w=0 (8-94)

W = W) (8-95)

and



210 Chapter 8: Lagrangian Dispersion Models

> - 86 (8-96)

Particles are also reflected at the top (z = z;) and the bottom of the computa-
tional domain. All the above assumptions provide particle simulation results that
agree well with water tank experiments by Willis and Deardorff (1978, 1981)
(see Figure 8-5), wind tunnel experiments of Poreh and Cermak (1984), and
field experiments by Briggs (1983).

As noted above, the scheme of Equations 8-81 through 8-83 requires the
generation of non-Gaussian terms du, a generation that asks for some slight
adjustments to force the variance of the random numbers to be positive. Alterna-
tively, the terms du could remain Gaussian and the (-w/T.)dt term in
Equation 8-11 could be modified instead, e.g., by making it nonlinear (Thom-
son, 1987). This alternative approach avoids the problem met by de Baas et al.
(1986) of satisfying the requirement that (du)? > 0 at all heights and seems, at
least theoretically, a more satisfactory development (Sawford, personal commu-
nication).

Schemes such as the one of Equations 8-81 through 9-83 for the solution
of Equation 8-11 represent an improvement of the Langevin equation to simulate
convective diffusion. However, they complicate the treatment of the cross—corre-
lation terms. These terms, in Section 8.3.4, were discussed under the implicit
assumption of using the Langevin Equation 8-11 with the conditions of Equa-
tions 8-77 through 8-79, which make it equivalent to Equation 8-16. A simple
modification is required to maintain the advantages of both approaches (i.e., the
improved Langevin equations for convective simulations and the cross-correla-
tion terms). In fact, either set of Equations 8-37 through 8-39 or 8-55 through
8-57 can be rewritten in the sequence u;, u;, 4, (Equations 8-37 through 8-39)
or uj, uy, u, (Equations 8-55 through 8-57), thus allowing the first equation of
either scheme, which does not contain any cross—correlation term, to represent
the vertical velocities. By doing so, any complex Langevin equation scheme can
be used for u., while still maintaining all the cross-correlation terms. (Naturally,
however, if equations are rewritten in a different sequence, the derivation of the
parameters will change accordingly, even though the general form of the solu-
tions will remain the same.)

8.3.6 Concentration Calculations Using Particle Madels

Particle models are a set of algorithms for the generation of realistic tra-
jectories of imaginary, fictitious particles that simulate atmospheric motion. Each
particle can be tagged by a mass of pollutant that can be either constant or
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Figure 8-5. Dimensionless concentration contours in the vertical x,z plane. The
different plots present the results of the Langevin model (I) and the
cross-wind—-integrated measurements of Willis and Deardorff (II) for
the source heights: (a) z;/z; = 0.067; (b) z;/z; = 0.24; (c) z,/z; = 0.49.
Source height is indicated by arrow on ordinate (from de Baas, et al.,
1986). [Reprinted with permission from the Royal Meteorological
Society.]
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time-varying to allow loss of mass due to ground deposition and chemical decay
phenomena. Therefore, the spatial distribution of particle mass in the computa-
tional domain allows the calculation of a three-dimensional mass concentration
field, under certain computational assumptions.

For example, the most straightforward assumption is the superimposition,
in the computational domain, of a three-dimensional concentration grid. The
concentrations are then computed simply by counting the number of particles in
each grid cell and accumulating their masses. If concentrations need to be com-
puted only at “receptor” points (e.g., at a ground level), receptor cells can be
defined around these points and particles counted only inside those cells. A rigor-
ous concentration calculation, however, should not just add up the particle mass
in a given cell at a given time. In fact, the contribution of each particle mass
should be weighted by the total time the particle spent inside the cell during each
time step (Lamb, 1979b).

One of the great advantages of Monte-Carlo particle models, however, is
their “grid-free” characteristics, which allow higher time and space resolution
than other simulation techniques. In this respect, grid-free concentration calcula-
tions (i.e., calculations that do not require the definition of cells) to maintain this
important feature of the model are appealing. “Kernel” methods (Gingold and
Monaghan, 1982) allow grid-free concentration calculations that are smooth and
efficient. Kernel methods for air quality modeling are discussed by Lorimer
(1986). A general form of kernel density estimator is

C(l‘, t) = A—l(:-)— i m; W(l‘i -r, l) (8—97)

i=1

where ¢ is the concentration in r at time t; / is a time-dependent resolution
bandwidth (or smoothing length); m; is the pollutant mass of each particle i; W is
the smoothing kernel, which is a function of / and the distance r; - r of each
particle i from the receptor point. A(r) is a correction term for concentration
computations at locations r close to the boundary of the computational domain
D, where

13

A) = ——
® f W(r' -r, l)dr’
D

(8-98)

which, for an infinite domain D, reduces to A(r) = 1 everywhere.
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Several kernel functions W are available in the literature. The most com-
mon is the Gaussian kernel, in which

d=r-r (8‘99)

and

Wds 1) = — exp(——l- Eiﬁ) (8-100)
o (2.71’)3/2 2 2
The choice of / is critical. This term should not be kept constant, as is

done in many applications, but should change in relation to a natural length
scale. In general, / should be particle dependent and should be related to the
mean interparticle separation around r. Only particles with |d;| < / give substan-
tial contribution to ¢ (Lorimer, 1986). If / is too small, the spatial distribution of
the concentration c is “jagged” with a series of local maxima at each r;; if / is

too large, ¢ becomes overly smooth.

Using a Gaussian kernel, the particle model becomes very similar to the
puff models described in Section 7.8. It is important to note, however, that for a
puff model, / is substituted by o, 0,, and o, (i.e., the standard deviations of the
spatial concentration distributions of each puff), and these values are related to
the physics of atmospheric diffusion, while, in the kernel method, / should be
related only to the density of the particles around r. However, Yamada and Bun-
ker (1988) use a kernel density estimator, for their RAPTAD particle model,
which makes it, in reality, a puff model, in which each particle i is associated
with time-growing o,;, 0,; and o,; values that are estimated based on the homo-
geneous diffusion theory by Taylor (1921).

8.3.7 Particle Simulation of Buoyancy Phenomena

One of the main advantages of Monte-Carlo particle models versus other
particle methods (such as the particle-in-cell method described in Section 8.3.2)
is the cost-effective ability to move each particle independently from the others.
A correct treatment of buoyancy phenomena, however, requires the capability of
incorporating, into the particle dynamics, extra velocity terms that simulate
plume rise effects and heavy gas phenomena, both functions of local space prop-
erties related to the local concentration. Therefore, the motion of each particle
affected by buoyancy phenomena depends upon the particle concentration, i.e.,
the dynamics of neighboring particles.
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A simple, analytical approach to account for plume rise phenomena was
illustrated by Zannetti and Al-Madani (1983). More comprehensive approaches
have been proposed by Cogan (1985) and Gaffen et al. (1987).

8.3.8 Chemistry and Deposition

Since each particle can be tagged by its mass, i.e., the mass of pollut-
ant(s) whose dynamics is represented by that particle, linear chemistry and depo-
sition phenomena can be easily accounted for by properly modifying, in a dy-
namic way, the mass m; of each particle. For example, Zannetti and Al-Madani
(1983) proposed relationships such as

mi(t+ Af) = mi(t) exp(-At/T) (8-101)

to account for dry deposition, wet deposition, and linear chemistry transforma-
tion, where T is the appropriate time scale of each phenomenon that can vary
with time and space. Alternatively, any deposition can be computed using the
deposition velocity concept (see Equation 6-10), which requires the calculation
of particle mass concentration in the layers just above the ground and a conse-
quent dynamic reduction of the mass m; of the particle to account for the ground
deposition mass flux.

If nonlinear chemistry is required, for example, to simulate atmospheric
photochemistry and ozone production, two possible methods can be used. With
the first method, a concentration grid can be superimposed on the domain and,
at each time step, concentrations can be computed in each grid cell. Then, an
Eulerian photochemical model can be used to calculate the effects of chemical
reactions from all sources at each time step. If the chemical reactions of a single
plume must be simulated, a second method can be used, in which each particle
can be considered an expanding box representing a section of the plume that
grows with time and entrains background air and, possibly, other emissions along
its trajectory. Then, the photochemical module of a Lagrangian box model (see
Section 8-2) can be used to calculate the effects of chemical reactions inside
each box at each time step. It is clear, however, that nonlinear chemistry by
particle models is complex and extremely demanding of computational re-
sources. A proper consideration of nontrivial chemical reactions may well be
impossible in a Lagrangian framework. In any case, it would at least require a
two-particle approach, since, for a second-order reaction, the reaction rate de-
pends on the reactant covariance, which is a second-order concentration statis-
tics (Sawford, personal communication).

Particle models can also be used to simulate the behavior of actual par-
ticulate matter in the atmosphere, whose dynamics is affected by atmospheric
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turbulence and gravitational settling velocity V5, which depends upon the diame-
ter d, of the aerosol particle. For example, Figure 8-6 shows the velocities with
which spherical particles for different particle diameters and densities fall. When
these particles hit the ground, permanent deposition can be assumed or, alterna-
tively, probabilistic methods can be used to simulate particle deposition and,
when deposited, the possibility of particle resuspension. For example, Zannetti
and Al-Madani (1983) use expressions such as

g = 1- exp(-At/T) (8-102)

to calculate both the deposition probability of a particle that reaches the ground,
and the resuspension probability, where T is an appropriate time scale that
depends upon meteorology and surface characteristics.
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Figure 8-6. Fall velocity of spherical particles as a function of particle diameter
and density. (Adapted from Hanna et al., (1982), as presented by
Stern et al. (1984)). [Reprinted with permission from Academic
Press.]
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8.3.9 Advantages and Disadvantages of Particle Models

Dispersion simulation by Lagrangian particles has been called “natural”
modeling. These models do not need the input of artificial stability classes, em-
pirical sigma curves, or diffusion coefficients that are practically impossible to
measure. Instead, diffusion characteristics are simulated by attributing a certain
degree of “fluctuation” to each particle, using, for example, the computer’s capa-
bility to generate semirandom numbers.

The basic advantages of this approach (e.g., see Lamb et al.,, 1979a;
Lange, 1978) are:

- Compared with grid models, this method avoids the artificial initial
diffusion of a point source in the corresponding cell and the advec-
tion numerical errors.

— This method is practically free of restricting physical assumptions,
since all uncertainties are combined into the correct determination
of pseudovelocities.

— Each particle can be tagged with its coordinates, source indicator,
mass, activity, species and size, allowing computation of wet and
dry deposition, decay, and particle size distribution.

- The meteorological input required can be directly inferred from
measured data. The primary information needed is (Lamb et al.,
1979a) the variance of wind velocity fluctuations and the
Lagrangian autocorrelation function, which can be estimated from
Eulerian measurements.

Potentially, this method is superior in both numerical accuracy and physical
representativeness. However, much research is still needed to extract, from the
scarce available meteorological measurements and our limited theoretical under-
standing of turbulence processes, the meteorological input required to run this
model (i.e., the pseudovelocities to move each particle at each time step).
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