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ABSTRACT

Recent developments in puﬁ methods for simulating plume behavior are discussed. Modifications to

_ the basic methodologies are introduced which make it more generally applicable to non-stationary and
 non-homogeneous conditions, as well as calm wind situations. The modifications described should also = =
allow significant reductions of computer storage and running time requirements.. The- algorithm pre- :
sented could easily be extended to the treatment of segment or area sources. The model accurately re- -

produces the analytical solution to the steady-state Gaussian plume equation.

1. Introduction

It is well known that the basic Gaussian approach
in air pollution modeling gives a plume formula
whose validity requires the main assumptions of (i)
spatial homogeneity, (ii) stationary conditions and
(iii) flat terrain. The basic steady-state Gaussian
plume formula can be written in the following way
(without ground or inversion layer reflections and
without decay terms):
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where x = x(s, r) is the concentrationinr = (x,,y, z,)
due to the emission ins = (x,, y,, 2,), Q is the emis-
sion rate, oy, = o(ja, d) and o, = o.(J., d) are the
plume standard deviations (horizontal and vertical)
expressed as a function of horizontal and vertical
turbulence states, j, and j,, and downwind distance
d=[r- s)'u]/|u|; u = (U, Uy, u,) is the wind
velocity vector; ¢ is the crosswind distance ¢
= (|r — s|? — d®'?; and H = z, + Ah is the effec-
tive emission height due to the release height z,; and
the plume rise Ah. Eq. (1) is applied for d > 0;
if d < 0, then the concentration x is zero.

As can be easily seen, Eq. (1) refers to a stationary
state (x does not depend on time), uses meteorologi-
cal conditions (wind and turbulence states) that must
be considered homogeneous and stationary in the
modeled area, and cannot work in calm condi-
tions where |u| — 0. However, the simplicity of the
Gaussian approach, its relatively easy use with
clearly measurable meteorological parameters and,
-especially, the elevation of this methodology to the
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‘quantitative decision-controlling" level (U.S.= EPA,

1978), have stimulated research aimed at removing
the limitations of the Gaussian theory to treat the
complex situations of the real world.

One area of particular emphasis has been the
identification, for complex meteorological or terrain
situations, of those parameters that allow Eq. (1)
to give the maximum concentration at a receptor.
Other applications have used Eq. (1) in a *‘climato-
logical”’ way to give long-term averages (monthly,
seasonally, or annually) in the receptors (e.g., Mar-
tin, 1971; Runca et al.,1976). In these applications,
each concentration computed by Eq. (1) is weighted
by the frequency of occurrence of its corresponding
meteorological condition. Yet, other applications
have even tried to remove the physical meaning of
the parameters in Eq. (1). For example, Melli-and
Runca (1979) allowed the ‘‘wind speed” |u| to
change its value as a function of d, the downwind
distance, to produce ground level concentration
values more similar to those obtained by finite-
difference simulations in the same conditions.

In the past, the more complex time-varying ap-
pllcatlons of simulation modeling have made exten-
sive use of dynamic grid model techniques (mainly,
finite-difference simulations following the K-theory
approach). However, especially recently, a growing
concern has arisen about some important limitations
of such a numerical approach. Specifically, 1) nu-
merical treatment of the advection terms often pro-
duces an unreasonable, artificial diffusion, and 2) K-
theory simulation of the growth of a plume.from a
point source is often fundamentally wrong in tur-
bulent flows. Other well-known limitations are .that
3) concentrations are computed as spatial averages
in three-dimensional cells (which makes comparison
with point measurements difficult and produces an
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erroneous initial dilution of those plumes whose
width is smaller than the cell dimensions), and 4) re-
lating the diffusion coefficients K to standard atmos-
pheric measurements is difficult.

To overcome some of these limitations, some
modelers have recently attempted to (i) develop

new transport and diffusion techniques for the more .

complex applications (e.g., the particle-in-cell
method; Sklarew et al., 1971; Lange, 1978), or
(i) extend the applicability of the Gaussian method
to such situations. In the category (ii), some exten-
sions of Eq. (1) have been developed to treat non-
stationary non-homogeneous conditions. In partic-
ular, the segmented plume approach :(Chan and
Tombach, 1978; Chan, 1979) and the puff approach
(Lamb, 1969; Roberts et al., 1970) have been suc-
cessfully applied to pseudo-steady-state conditions.
Both these methods break up the plume into a series
of independent elements (segments or puffs) that
evolve in time as a function of temporally and
spatially varying meteorological conditions.

This paper will analyze the puff method and will
define a new computational algorithm for the simula-
tion of a plume by a series of puffs. The description
of the basic puff method is presented in Section 2,
while in Section 3 some recent improvements in the

puff method are discussed and problems related to

the correct application of standard puff methodology
are reviewed. Section 4 contains a new puff algorithm
and a method for the treatment of calm conditions,
while in Section 5 the computer programming of the
new methodology is briefly described. Finally, Sec-
tion 6 contains a few concluding remarks concern-
"ing future applications and developments.

2. The basic puff method for plume representation

“The most obvious way of treating. non-stationary
conditions in emissions. and/or meteorology, while
maintaining the Gaussian approach, is to describe
the point source emission into the atmosphere by a
series of “‘instantaneous’’ puffs, each one generated
at every time step and containing all the mass emitted
during that time interval: = - - . )

Actually; real puff dispersion theory shows that
puffs and plumes disperse at different rates and are
governed by different theories (e.g., Pasquill, 1974).
However, the representation of a plume by a series
of ‘“‘equivalent’ (or ‘‘fictitious’’)  puffs whose o’s
evolve according to Gaussian: plume theory, has
been shown to be:a reasonable approximation of
the physical problem, which allows some degree of
representation of non-stationary non-homogeneous
‘conditions, otherwise:impossible to handle with
standard :Gaussian theory. L ,

If At is our time increment [where, in general,
At = A1(?), a function of the time], each continuous
function of the time f(¢) will be represented by a

JOURNAL OF APPLIED METEOROLOGY

VOLUME 20

discrete series of values (one at each time step),
where each discrete value is the average of f during
the corresponding time interval. In such a way, at
time ¢ we have a discrete value f[f = At/2,t + At/2]
for f, which can be considered equal to the continu-
ous value, f(¢), if the function f is sufficiently
““smooth’’ with respect to At.

Then, an emission rate Q(¢) can be represented,
during the interval [t, — At/2, t, + At/2], by a puff
of total mass Q(#,) At generated at time ¢, with its
center at the emission exit of the source. Each such
puff evolves dynamically in time so that, at each
time interval [¢, ¢ + At] non-stationary non-homo-
geneous meteorological conditions (average wind
and turbulence) move the center of each puff and
increase the horizontal and vertical standard devia-
tions of its concentration distribution. The concen-
tration at each receptor is computed simply by add-
ing the contributions of all existing puffs in the
domain. o

In mathematical notation, the center of a puff at
time ¢ has coordinates p(¢) = [x(1), ys(1), zp(1)],
and the average wind velocity vector at a generic
point p = (x, y, z) during the interval [¢, ¢ + At] is
u(p, t + At/2). Then the advection phenomenon can
be described! by : - C

p(r + At) = p(t) + u(p(), t + At2)Ar. (2)

For the Gaussian steady-state general case, the
plume growth is described by its horizontal and
vertical standard deviations. We can assume, for
example, the usual

on = ap(jp)d™w,

(3a)
(3b)

where d is the downwind distance from the source,
and a and b are empirical values, depending upon
the horizontal and vertical turbulence states, j, and
j.. Generally, the Pasquill-Gifford stability classes
are used (as in Turner, 1970); they provide discrete
values of j = j, = j, for this purpose. However,
many controversies exist on the definition of appro-
priate turbulence classification methods and sigma
functions. Limitations of available methodologies
and practical, useful recommendations have been
defined at the AMS Workshop on Stability ‘Clas-
sification Schemes and, Sigma Curves (Hanna et
al., 1977). S

" In the puff model, each puff has its own o(¢) and

o, = a,(j)d"?,

" o,(t) which grow with time. Their increase during

the interval [7, 7 + Af] can be computed by know-

1 Actually, a correct space-centered numerjcal method should
require n{[p(s) + p(t + AN1/2,t + At/2} in Eq. (2). In such a -
case, this'equation would require an iteration procedure to achieve
convergence. However, in practical air pollution applications,
this further refinement can be ignored. The same consideration
holds for the j’s turbulence states discussed below.
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ing the space-time dependent turbulence states j}
= jn(p(?), t + At/2) andj¥ = j,[p(¢), t + At/2] at the
center p(¢) of the puff. This computation, however,
is not straightforward, since the present ‘‘size’’ o,(¢)
and o,(¢) of the puff depends upon the many differ-
ent past diffusion conditions encountered during the
entire interval [¢,, ¢]. Because of this, calculation of
- the growth of the sigmas during [¢, r + Af] requires,
first, the computation of a ‘‘virtual’’ distance, d, (as
in Ludwig et al., 1977) or, more generally, virtual
distances of a horizontal d,, and a vertical d,. The
virtual distance, d;, or d,, is the downwind distance
that the same puff, to have the same o,(¢) or o,(?),
would have had to travel from the source if the tur-
bulence state had always been j} or j¥ during its
entire ‘‘life’’ [¢,, ¢].

In parallel with Eq. (3a), d,, is computed by
on(t) = akdy®,

O]
(52)

which gives
d, = [on(t)a}]",

where af = an(j¥) and by = by(j}).
Then if Ad is the downwind distance traveled by
the puff in the interval [z, ¢t + At], where .

Ad = |u(p(n), 1 + AtP2)|Ar,

the new standard deviations at ¢t + Ar will be

6

_ an(t + Af) = aj(dy + Ad)*h. (7a)
The same consideratiqns apply to d,, and give

d, = [ot)af]'", (5b)

a.(t + A1) = a¥(d, + Ad)", (7b)

where a} = a,(j¥) and b} = b,(j¥).

The contribution of one puff at p(¢) to a receptor
at r during the interval [t — At(¢)/2, t + At(2)/2],
for the general case of Ar time dependent, will be

Q(10)At(t,)
(217 Bap(t)o (1)

x exp[-%|[p() — 1] + o(®)|2], (®)

where a(t) = [o(t), on(t), o.(¢)] and the vector
notation ¥ = &« + B means that its components are
(¥): = (@)/(B);, fori = x, y and z.

In Eq. (8) note that Q and the sigmas are puff-
and time-dependent, and no reflection or decay term
has been considered. The concentration at r during
the interval [t — A#/2,t + At/2] will be calculated
by summing of contributions x = x[p(?), r] of Eq.
(8) from all existing puffs.

It must be pointed out that, if homogeneous tur-
bulence conditions are assumed in the domain (or
if turbulence states are horizontally homogeneous
with no vertical wind component), the determina-
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tion of the virtual distances by Egs. (5a) and (5b)
is not required at every time step, but only when
there has been a change in turbulence state. How-
ever, this procedure requires the additional saving
of the virtual distances of each puff at each time step.

From the preceding discussion, it is easy to recog-
nize that, at least theoretically, this method can
make a. full utilization of three-dimensional time
dependent meteorological inputs and, coupled with a
dynamic meteorological model (or measurement
interpolation technique), is capable of handling non-
stationary non-homogeneous dispersion in a general
complex terrain situation.

Reflection terms can be added to Eq. (8) to take
into account the effects of ground and/or the inver-
sion on each puff. In particular, Ludwig et al. (1977)
have identified (following the suggestion of Turner,
1970) when multiple reflections should be computed
and when the concentration field produced by a puff
can be considered vertically homogeneous between
the terrain and the inversion layer.

Finally, the total mass Q(#,)A#(¢,) of each puff
can be decreased at each At (for example, with
exponential dumping terms), to taking into account
1) deposition, 2) precipitation scavenging, and 3)
chemical decay.

3. Recent improvements in the puff algorithm

The puff method was improved by Sheih (1978)
to take wind shear into .account. Sheih’s elegant
algorithm describes éach puff with six moving tracer
particles, where the concentration distribution of
each puff is determined by fitting an ellipsoid to the
cluster of the six particles and assuming a three-
dimensional Gaussian distribution with standard
deviations equal to the half lengths of the principal
axes of the ellipsoid. In this way, the departure from
the standard Gaussian plume distribution increases
as the plume travels further downstream due to the
accumulation of the shear effect (if present in the
wind data utilized by the method).

Moreover, dynamic plume rise can be considered
(Sheih, 1978) where each puffis generated with some
buoyancy parameters which produce, during initial
several time steps, -an additional vertical velocity
component due to buoyancy.

The most important problem, however, in all puff
models is the determination of A¢: a too large Az
produces inaccuracy in the plume description, while
a too small At causes serious problems of computer
storage and CPU running time. Ludwig et al. (1977)
analyzed. this problem and proposed a reasonable
solution. In fact, it can be shown (see Fig. 1) that an

-infinite line strmg of three-dimensional equally-

spaced puffs is a perfect approximation of a Gaus-
sian plume when the separation Ad between two
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FRACTION OF PUFF SEPARATION ad

FiG. 1. Concentration x between the centers of two puffs of an
infinite string of equally-spaced puffs separated by the distance
Ad (a recalculation from Ludwig et al., 1977). This concentra-
tion y is normalized by the value Xexaer Which is obtained when
Eq. (9) is met. The same behavior is found in each line parallel
to the puff’s centerline.

consecutive puff centers satisﬁgs the condition
. Ad<o, ©)

where o is the streamwise standard deviation of
the Gaussian concentration distribution of each puff.

In real non-steady cases, where-we do not have
infinite straight lines but, rather, segments for plume
representation, Eq. (9) canstill be generally used for
the determination of Az, which will be, in this way,
a function of wind speed (since Ad = |u|At, lower
wind speed allows larger Ar). But close to the source
(where o’s are very small), Eq. (9) can require a
At of less than a few seconds, which is, for multi-
source multi-hour simulations, by all means, too
expensive.? So, Ludwig et al. (1977) use a reason-

> 2 It must be remembered that the ‘puff method is just a repre-
sentation of the plume by a series of independent equivalent
puffs. Even with very small Az, the nature of the whole problem
remains the, plume dispersion simulation over time averages
sufficiently large to avoid short-term’ variations (e.g., the hori-
zontal wind meander). © : .
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able At equal to S min, but at near source allow their
method to generate, at each time step At, a sufficient
number of equally spaced downwind puffs from each
source to meet Eq. (9). After a while, when puffs
have grown downwind, Eq. (9) is used as a criterion
to allow merging puffs close together. In this way,
the entire method allows a sensible reduction of the
total number of puffs to be handled, still maintain-
ing the accuracy of the computation.

Sheih (1978) minimized the above problem by in-
corporating the effects of mean-wind advection into
the streamwise dispersion coefficient. In other
words, the mean wind stretches the initial puff by
Iu]At, providing reasonable overlapping between
successive puffs. : ,

However, both Ludwig’s and Sheih’s methods
can work only in nearly steady-state conditions. In
fact, if At is large (as the S min used by Ludwiger al.,
1977), a sudden change of wind direction can cause
overestimation and/or underestimation in some
receptors, as illustrated in Fig. 2 where underestima-

tion at receptor 1 and overestimation at receptor 2
are obtained, during the interval [¢, # + At], even if
Eq. (9) is met at each time step. Again, if we really
want a fully non-stationary simulation, both puff
methods can require At not greater than a few
seconds for receptors near the sources.

It must be pointed out that Fig. 2 represents an
extreme case of non-stationary conditions and that,
in such a situation, the plume becomes extremely
complex and requires very detailed meteorological
data for its complete characterization. Therefore,
the method proposed in the next section for better
treating such non-stationary effects, must not be
seen as the solution to the problem, but just as an
improved algorithm for a more efficient simulation
of the phenomenon with a reasonable amount of
meteorological input data.

Plume at time t+At

Plume at time t

Uy - .
—— up to time t

“B fromt to teat

X

FiG. 2. Calculated positions of puffs after a sudden change in
wind direction. The circles indicate one standard deviation from
the ‘center of each puff.
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4. The AVPPMS? puff method
a. Puffs handling

The method the author has developed handles
general non-stationary conditions without creating
serious computer storage and CPU time-consumption
problems, since A¢, the time increment chosen, is
sufficiently large (e.g., 5—10 min). All the mass
emitted in the interval [#,, ¢, + At] is concentrated
in the puff generated at ¢,. Since such puffs do not
meet the condition required by Eq. (9), we can say
that a string of consecutive puffs from the same
source gives only the geometry of the plume evolu-
tion, where a ‘‘segment’’ of the plume is represented
by the area between two consecutive puffs. How-
ever, the puff masses cannot be directly used for
computation of the contribution at the receptors
since Eq. (9) is not met (see Fig. 3).

~ At each time step (say, ¢ + At), all information
about the status of the present puffs (at timez + At)
and previous puffs (at time #) must be available and
an array ‘‘chain’’ is used for relating each puff to its
original source according to its age.

If a given source has generated n puffs in the
domain at time ¢ (and, therefore, n + 1 puffs at time
t + At), it can be seen from Fig. 3 that n three-
dimensional quadrilaterals can be defined, where the
vertices of each quadrilateral are determined by the
positions of two consecutive puffs at time ¢ and
t + At. In particular, Fig. 3 shows that all mass
-emitted from S and located at time ¢ in the segment
AB is concentrated in A, which moves to A’ in the
time interval [¢,¢ + Ar]. Actually, this mass has

3 AeroVironment puff plume model.

Plume at time t+at

/
quadrilateral //
/ ABB'A ,
/ ’

/
A
A

segment AB
s Plume at time t

X

F1G. 3. Schematic diagram showing the method by which
emitted mass distribution is treated. The circles have the same
meaning as in Fig. 2. .
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N

FiG. 4. Analysis of one quadrilateral (the circles have the same
meaning as Fig. 2). The contribution to receptor 2 is zero while,
for computation at receptor 1, n, X n, puffs are generated (split-
ting technique with o”’s interpolation) in the quadrilateral ABB’A’
and are indicated by asterisks (n, = 5, n, = 2). ‘

affected the quadrilateral ABB'A’ during the inter-
val [t, t + At]. The quadrilaterals need not lay on a
plane and may be degenerate. Each of the n quad-
rilaterals must be analyzed for the computation of its
contribution to each receptor, and the entire method
must be repeated for all sources at every time step.

This computation (see Fig. 4) first requires an
analysis to see if the quadrilateral gives a nonzero
contribution at a receptor. To this end, the closest
point in the quadrilateral to the receptor is found.
If the distance of this point from the receptor is more
than, say 4 or 5 ¢’s, the contribution is zero (as in
receptor 2). Otherwise, the mass of the puff at A,
which has been moved to A’ (but could have lost
mass due to deposition or chemical decay), must be
redistributed in the quadrilateral according to the
real physics of the non-stationary dispersion. To this
end, a splitting technique is applied to the quadri-
lateral, with an artificial generation of a sufficient
number of puffs in its area so that Eq. (9) is met. This
can be. done, for example, as illustrated in Fig. 4°
(using the more critical upwind puffs which have
smaller o’s), where the number n, can be computed
by applying Eq. (9) to the ‘‘old’’ segment AB, while
n, can be computed by applying Eq. (9) to the ‘‘up-
wind’’ segment BB’ or better, to its component nor-
mal to AB. The characteristics of each new puff
(center position and o’s) are obtained by interpola-
tion among the known characteristics of the four
puffs, A, B, B’, A’'.

The first downwind quadrilateral contains the
source. Some information on initial spread of the
plume (e.g., as a function of the plume rise or of the
exit diameter of the source) can be used for supply-
ing o values at the source point to allow the interpo-
lation computation in this first quadrilateral.
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FIG. 5. An example of calm conditions treatment in the puff method. Solid lines are the common o
functions (source: Turner, 1970), while dashed lines represent the downwind growth of a puff in

neutral D stability when u < upin.

It must be noted that this splitting technique will
be applied only when required for a particular
receptor. In this way, we solve our computer storage
and time problems without losing the accuracy of
the computation.

b. The calm situations

This problem can be solved by allowing Egs. (3a)

and (3b) to work as a function of time (more exactly,

“the age) instead of downwind distance. In fact, if #
— t, is the age of the puff, the formula

o = ad® (10
is equivalent in some way to
o = alu(t - 1,)1° = au(t — 1) = a’(t — 1), (11)

where u is the average wind speed, and a’ = au®.
For wind speed less than a fixed value up;, (e.g.,

the instrument minimum significant value), a’' can be

kept fixed to the value ap,, where ’ ‘

Gmin = Alinin, 12
which allows Eq. (11) to work for calm,conditiohs
as a function of the age of the puff. In other words,
we can say that if Eq. (10) holds for transport condi-
tions (4 = up,), and

o=a'(t —t)” (13)
holds for calm situations (¥ < um,), then Eq. (11)in
the case u = up,, requires both a’ = ap,, and
b' =b. L V

In the puff method, for the sigmas growth com-
putation betweent and¢ + At, the concept of virtual
distance can be extended to that of horizontal and
vertical virtual ages, t, and ¢,. They are computed in
a way similar to that in Section 2. We obtain rela-
tions similar to Egs. (5a) and (5b), i.e.,

th = [on(t)ai*]v,

t, = [ou(az*]P,

(14a)
(14b)

ax* = ajulfin,
have been de-

where aj}* = afull,, bi*
b¥* = b¥, and aj,
fined in Section 2.

The virtual age f, or ¢, is the age that the same
puff, to have the same o,(f) or o.(t), would have
had if the turbulence state had always been j3
= julp(2), t + At/2). or ji = j.Ip(?),t + At/2] dur-
ing [z, t]. '

In such a calm situation case, Eqgs. (7a) and (7b)
can be rewritten as

o
¥, a¥ and b}

(15a)
(15b)

ot + Af) = a}*(tn + A,
ot + At) = ar*(t, + At)b:zm,

The above method, after the determination of
Umin, gives a consistent way of treating the growth
of o, and o, when calm conditions are found in the
interval [z, t + A¢]. However, experimental data
are expected to give a better estimate of a** and
b** and to validate the entire procedure.

Fig. 5 shows the behavior of o and o, according
to the above proposed methodology, when# < #min.
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c. Use of more complex o formiulas.

Often, particular situations—for example, disper-
~ sionin complex terrain—have been better simulated
by o formulas different from Eq. (10), as in the case
shown by Mullen et al. (1977), where equations like

o=p+qd(1+3 X 10f" d)¢ (16)

are proposed (p, g, r,s are empirical parameters
which are a function of atmospheric turbulence,
terrain roughness, and meteorological measure-
ments). If formulas of this type must be used, the
determination of the virtual distances or ages is not
straightforward as in Egs. (5a) and (5b) or (14a) and
(14b), and an iterative algorithm (e.g., the Newton-
Raphson’s method) may be required.

d. Segment, area and volume sources

The proposed method can be easily extended to
segment, area and volume sources. They can be
represented, respectively, by the evolution of 2, 4
and 8 puffs in the domain, where, in the interval
[t,t + At], an analogous splitting method using
considerations similar to those-developed in the
quadrilateral of Fig. 4 are applied. In this case, the
emission due to the entire segment (or area or vol-
ume source) is concentrated into 2 (or 4 or 8) tracing
- puffs and when required by the receptor position
these masses must be spread into volume elements
(now the ‘‘vertices’’ of the quadrilaterals consist of
2, 4 or 8 tracing puffs) to satisfy both Eq. (9) and to
maintain the accuracy of the non-stationary compu-
tation. However, we think that only the segment
sources, perhaps, will require such a refined meth-
odology, while area and volume sources should be
better treated by grid models.

e. Other improvements

Special dispersion conditions have given experi-
‘mental data for which a better fit could be obtained
if a different diffusion were allowed 1) crosswind
and downwind (e.g., complex terrain situations),
and 2) above and below the centerline of the puffs
(e.g., vertical stratification effects). As an empirical
improvement, these effects can be taken into-ac-
count by describing the size of the puff with four o’s:
o4 Oy, 0F, 07, where o7 is the standard devia-
tion above, and o; below the puff center: In par-
ticular, the evolution of the two o,’s will take into
account the average stability in the area (growmg
with time) affected by the puff (e.g., one o7 in the
vertical above, and one o below).

Reflection on the ground can be computed by add-
ing the contribution of an imaginary equwalent puff
at [x,, ¥p, Zy — (2, — Z,)], where.

2y = Valzy(xp, yp) + 2o(xr, ¥,)] a7
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is the mean elevation on the ground between that of
the puff, z,(x,,y,), and that of the receptor, z,(x,,,);
naturally, all z’s must be computed with respect to
the same reference level, e.g., sea level. The con-
tribution of this imaginary puff will be- multiplied
by a reflection coefficient (between 0 and 1). This
same reflection technique can also be applied to the
inversion layer.

When a puff is sufficiently large, its evolution can
probably be better described by a grid model. For
example, when the ¢’s are of the size of the grid cell,
the puff can be erased together with a correspond-
ing mass generation in the coupled grid model for
handling of long-range effects. The puff method
alone, therefore, is seen to work better for short-
range near-field simulations.

f- Puff model comparison with the steady-state
Gaussian formula

A complete validation of the model will be per-
formed when tracer data in non-stationary condi-
tions are available. However, the first operative
FORTRAN-language version of the puff method
(AVPPM/2A), which incorporates the concepts
described previously, has been successfully tested
against the Gaussian steady-state formula of Eq. (1).
A case like that described in Fig. 6, which should
require At of the order of 10 s with the basic puff
method, can be accurately treated with At of one
order of magnitude greater. In fact, in Fig. 6, Ad is
one order of magnitude greater than o values above
most of the receptors.

However, simulation runs have pointed out the

importance of using an accurate splitting technique.
In fact, if the o”’s values (of the artificial puffs gener-
ated in the quadrilateral) are calculated by a simple
linear interpolation between existing puffs, we in-
troduce a numerical error since the real o’s evolu-
tion is not linear but is described, for example, by
Eq: (10). In the case of Fig. 6 (with b = 0.78 < 1),
the linear interpolation produces a systematic under-
estimation of the o’s of the interpolated puffs, which
causes concentration undérestimation before the
maximum downwind ground-level concentration
and overestimation after. Naturally, the opposite
effect has been obtained with b > 1.
.- Fig. 6 shows how the above numerical approxima-
tion (lmear o’s interpolation in the splitting method)
requires, in that particular case, a At less than, say,
3 min in order to maintain some good computational
accuracy. However, a large At can be used if a more
realistic interpolation is used. For example, in the
artificial puff generation technique shown in Fig. 4,
Eq. (10) can be used for the determination of the o’s
of the puffs inside the quadrilateral.

Numerical tests using the correct exponential

‘ mterpolatlon of Eq. (10) have shown that this more
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FiG. 6. Comparison of the AVPPM method (with o’s linear interpolation) with
the steady-state Gaussian formula of Eq. (1). Concentration x is computed at

ground-level receptors downwind to the source (crosswind distance, ¢ = 0).

accurate computation is particularly important for
splitting inside the first quadrilateral (the one which
contains the source), where the linear interpolation
produces. its highest error. However, the linear
interpolation is computationally faster and, with
some attention to the determination of the At values
as a function of wind speed and receptor locations,
can give satisfactory results.

5. The programming code

The code (AVPPM/2A) handles multiple point
sources and multiple receptors and requires topo-
graphical, meteorological and emission input in-
formation in general complex terrain. Essentially,
the puff dispersion code utilizes a *‘chain’ vector
for relating all puffs at 7 and ¢ + At generated by
each source. This chain gives the index numbers of
all required puffs so allowing the computation of
each source contribution in each receptor. The
generation of a new puff is done by creating a new
entry 'in the next free area of the main puff storage
array and by adding the entry index to the chain.
The erasing of out-of-boundary puffs is. done by
shifting the indices in the chain (the newest puffs
are at the end of the chain of each source) and by
setting free-area switches in the main puff stor-
age array.

At each interval [z, t + At], both old (#) and new
(t + At) puff parameters are available and the com-
putation, according to the above methodology, can

then proceed to the next time step, when new puffs

~ become old and a newer configuration is computed.

Finally, the splitting algorithm does not require a
special storage for the additional puffs generated,
since a loop can be defined for the accumulation of
different contributions due to the imaginary puffs
interpolated in the quadrilateral area. '

6. Conclusions

A new puff dispersion algorithm for plume rep-
resentation has been discussed. The methodology,
reasonable in computer storage and CPU time, al-
lows a fairly good representation of the air pollution
dispersion even in the most accentuated non-sta-
tionary non-homogeneous méteorological and emis-
sion conditions. The method should improve our air
pollution simulation capabilities, especially for
short-term, short-range simulations, and where high
quality meteorological data are available (e.g.,
Doppler acoustic sounder measurements). In partic-
ular, this method should work better with both a
meteorological input model (for supplying a three-
dimensional meteorological field), and a grid model
(for the downwind long-range evolution of the puffs).

Experimental data are expected to validate this
approach, especially the algorithm which allows
the treatment of calm conditions. Data are also ex-
pected to suggest puff concentration distributions
different from the Gaussian one. These new dis-
tributions, in fact, could be easily incorporated in
the proposed method.
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